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Abstract. A desirable property of an autocovariance estimator is to be robust to the pres-

ence of additive outliers. It is well-known that the sample autocovariance, being based

on moments, does not have this property. Hence, the use of an autocovariance estimator

which is robust to additive outliers can be very useful for time-series modeling. In this pa-

per, the asymptotic properties of the robust scale and autocovariance estimators proposed

by Rousseeuw and Croux (1993) and Ma and Genton (2000) are established for Gaussian

processes, with either short-range or long-range dependence. It is shown in the short-range

dependence setting that this robust estimator is asymptotically normal at the rate
√

n, where

n is the number of observations. An explicit expression of the asymptotic variance is also

given and compared to the asymptotic variance of the classical autocovariance estimator.

In the long-range dependence setting, the limiting distribution displays the same behavior

than that of the classical autocovariance estimator, with a Gaussian limit and rate
√

n when

the Hurst parameter H is less 3/4 and with a non-Gaussian limit (belonging to the second

Wiener chaos) with rate depending on the Hurst parameter when H ∈ (3/4, 1). Some Monte-

Carlo experiments are presented to illustrate our claims and the Nile River data is analyzed

as an application. The theoretical results and the empirical evidence strongly suggest using

the robust estimators as an alternative to estimate the dependence structure of Gaussian

processes.

1. Introduction

The autocovariance function of a stationary process plays a key role in time series analysis.

However, it is well known that the classical sample autocovariance function is very sensitive

to the presence of additive outliers in the data. A small fraction of additive outliers, in some

cases even a single outlier, can affect the classical autocovariance estimate making it virtually

useless; see for instance Deutsch et al. (1990) Chan (1992), Chan (1995) (Maronna et al.,

2006, Chapter 8) and the references therein. Since additive outliers are quite common in

practice, the definition of an autocovariance estimator which is robust to the presence of

additive outliers is an important task.

Ma and Genton (2000) proposed a robust estimator of the autocovariance function and

discussed its performance on synthetic and real data sets. This estimator has later been used

by Fajardo et al. (2009) to derive robust estimators for ARMA and ARFIMA models.
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The autocovariance estimator proposed by Ma and Genton (2000) is based on a method

due to Gnanadesikan and Kettenring (1972), which consists in estimating the covariance of

the random variables X and X ′ by comparing the scale of two appropriately chosen linear

combinations of these variables; more precisely, if a and b are non-zero, then

Cov(X,X ′) =
1

4ab

{
Var(aX + bX ′) − Var(aX − bX ′)

}
. (1)

Assume that S is a robust scale functional; we write for short S(X) = S(FX), where FX is

the c.d.f of X and assume that S is affine equivariant in the sense that S(aX + b) = |a|S(X).

Following Huber (1981), if we replace in the above expression Var(·) by S2(·), then (1) is

turned into the definition of a robust alternative to the covariance

CS(X,X
′) =

1

4ab

{
S2(aX + bX ′) − S2(aX − bX ′)

}
. (2)

The constants a and b can be chosen arbitrarily. If X and X ′ have the same scale (e.g. the

same marginal distribution), one could simply take a = b = 1. Gnanadesikan and Kettenring

(1972) suggest to take a and b proportional to the inverse of S(X) and S(X ′), respectively in

order to standardize X and X ′. As explained in Huber (1981), if S is standardized such that

S(X) = 1 in the case where X is standard Gaussian, then, provided that (X,X ′) is bivariate

normal,

CS(X,X
′) = Cov(X,X ′) . (3)

In this case indeed, aX + bX ′ and aX − bX ′ are Gaussian random variables with variance

σ2
± = a2 Var(X) ± 2abCov(X,X ′) + b2 Var(X ′), and so, if Y ∼ N (0, 1), then S(aX ± bX ′) =

S(σ±Y ) = σ±S(Y ) = σ± and S2(aX + bX ′) − S2(aX − bX ′) = σ2
+ − σ2

− = 4abCov(X,X ′)

yielding CS(X,X ′) = Cov(X,X ′).

Ma and Genton (2000) suggested to use for S the robust scale estimator introduced in

Rousseeuw and Croux (1993). This scale estimator is based on the Grassberger-Procaccia

correlation integral, defined as

r 7→ U(r, FX) =

∫∫
1{|x−x′|≤r}dFX(x)dFX(x′) , (4)

which measures the probability that two independent copies X and X ′ distributed accord-

ing to FX fall at a distance smaller than r. The robust scale estimator introduced in

(Rousseeuw and Croux, 1993, p. 1277) defines the scale Q(FX) of a c.d.f. FX as being

proportional to the first quartile of r 7→ U(r, FX), namely,

Q(FX) = c(FX) inf {r ≥ 0, U(r, FX) ≥ 1/4} , (5)

where c(FX) is a constant depending only on the shape of the c.d.f. FX . We see immediately

that Q(FX) is affine invariant, in the sense that transforming X into aX + b, will multiply

Q(FX) by |a| . This scale can be seen as an analog of the Gini average difference estimator

n−1(n − 1)−1
∑

1≤i6=j≤n |Xi − Xj |, where the average is replaced by a quantile. It is worth

noting that instead of measuring how far away the observations are from a central value,

Q(FX) computes a typical distance between two independent copies of the random variableX,

which leads to a reasonable estimation of the scale even when the c.d.f. FX is not symmetric.
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The constant c(FX) in (5) is there to ensure consistency. In the sequel, the c.d.f. FX is

assumed to belong to the Gaussian location-scale family

{Φµ,σ(·) = Φ((· − µ)/σ), µ ∈ R, σ ∈ R
∗
+} , (6)

where Φ is the c.d.f. of a standard Gaussian random variable. The reason we focus on the

Gaussian family is that if we want to use Q as the scale S in (2), we will need to compute

c(FaX+bX′) and c(FaX−bX′). This is easily done when (X,X ′) is a Gaussian vector. Indeed,

in view of (3), one has

Cov(X,X ′) =
1

4

[
Q2(FX+X′) −Q2(FX−X′)

]
, (7)

and in particular, since by (4) and (5), Q2(F2X) = (2Q(FX))2,

Var(X) = Q2(FX) . (8)

When FX = Φµ,σ we can then obtain the constant c(Φµ,σ) in (5) explicitly as noted by

Rousseeuw and Croux (1993). Since Q(Φµ,σ) = σ, (5) becomes

σ = Q(Φµ,σ) = c(Φµ,σ)σr0 (9)

where r0 is such that, in (4), U(r0,Φ) = 1/4. Hence for all (µ, σ) ∈ R × R
∗
+,

c(Φµ,σ) = c(Φ) = 1/r0 = 1/(
√

2Φ−1(5/8)) = 2.21914 . (10)

Let (Xi)i≥1 be a stationary Gaussian process. Given the observations X1:n = (X1, . . . , Xn),

the c.d.f. of the observations may be estimated using the empirical c.d.f. r 7→ Fn(r) =

n−1
∑n

i=1 1{Xi≤r}. Plugging Fn into (5) leads to the following robust scale estimator

Qn (X1:n,Φ) = c(Φ){|Xi −Xj |; 1 ≤ i, j ≤ n}(kn) , (11)

where kn = ⌊n2/4⌋. That is, up to the multiplicative constant c(Φ), Qn (X1:n,Φ) is the knth

order statistics of the n2 distances |Xi −Xj | between all the pairs of observations.

As mentioned by Rousseeuw and Croux (1993), Qn (X1:n,Φ) has several appealing prop-

erties: it has a simple and explicit formula with an intuitive meaning; it has the highest

possible breakdown point (50%); in addition, the associated influence function (see below)

is bounded. For a definition of these quantities, which are classical in robust statistics, see

for instance Huber (1981). The scale estimator of Rousseeuw and Croux is also attractive

because it can be implemented very efficiently; it can be computed with a time-complexity of

order O(n logn) and with a storage scaling linearly O(n); see Croux and Rousseeuw (1992)

for implementation details.

Using the robust scale estimator Qn (·,Φ) in (11) and the identity (2) with a = b = 1, the

robust autocovariance estimator of

γ(h) = Cov(X1, Xh+1) =
1

4
{Var(X1 +Xh+1) − Var(X1 −Xh+1)}

is

γ̂Q(h,X1:n,Φ) =
1

4

{
Q2

n−h (X1:n−h +Xh+1:n,Φ) − Q2
n−h (X1:n−h −Xh+1:n,Φ)

}
. (12)

Thus, in the sample version (12), the random variable X1 ±Xh+1 is replaced by the vector

X1:n−h ±Xh+1:n of length n− h.
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In this paper, we establish the asymptotic properties of Qn (X1:n,Φ) and the corresponding

robust autocovariance estimator γ̂Q(h,X1:n,Φ) for Gaussian processes displaying both short-

range and long-range dependence. We say that the process is short-range dependent if the

autocovariance function {γ(k)}k∈Z is absolutely summable,
∑

k∈Z
|γ(k)| < ∞. We say that

it is long-range dependent if the autocovariance function is regularly varying at infinity with

exponent D, γ(k) = k−DL(k) with 0 < D < 1 and L is a slowly varying function, i.e.

limk→∞ L(ak)/L(k) for any a > 0, and is positive for large enough k. The exponent D is

related to the so-called Hurst coefficient by the relation H = 1 −D/2. See, for more details,

(Doukhan et al., 2003, p. 5–38).

The limiting distributions of these estimators are obtained by using the functional delta

method; see van der Vaart (1998). In the short memory case, the results stems directly

from the weak invariance principle satisfied by the empirical process Fn under mild technical

assumptions. The rate of convergence of the robust covariance estimator is
√
n and the

limiting distribution is Gaussian; an explicit expression of the asymptotic variance is given in

Theorem 4.

In the long memory case, the situation is more involved. When D ≥ 1/2 (or H ≤ 3/4),

the rate of convergence is still
√
n, the limiting distribution is Gaussian and the asymptotic

variance of the covariance estimator is the same as in the short-memory case. When 0 < D <

1/2, the rate of convergence becomes equal to nD/L̃(n) where L̃ is a slowly varying function

defined in (38); the limiting distribution is non-Gaussian and belongs to the second Wiener

Chaos; see Theorem 8. We prove that these rates are identical to the ones of the classical

autocovariance estimators.

The study of the asymptotic distribution of the empirical process is not enough to derive

these results. It is necessary to use results on the empirical version of the correlation integral

which requires extensions of the results derived for U -processes under short-range dependence

conditions by Borovkova et al. (2001). For this part, we use novel results on U -processes of

long-memory time-series that are developed in a companion paper Lévy-Leduc et al. (2009).

The outline of the paper is as follows. In Section 2, the limiting distributions of the robust

scale estimator Qn (X1:n,Φ) in the Gaussian short-range and long-range dependence settings

are proved. From these results, the asymptotic distribution of γ̂Q(h,X1:n,Φ) is derived. In

Section 3, some Monte-Carlo experiments are presented in order to support our theoretical

claims. The Nile River data is studied as an application in Section 4. Section 5 is dedicated

to the asymptotic properties of U -processes which are useful to establish the results of Section

2 in the long-range case. Sections 6 and 7 detail the proofs of the theoretical results stated

in Section 2. Some concluding remarks are provided in Section 8.

Notation. For an interval I in the extended real line [−∞,∞], we denote by D(I) the set

of all functions z : I → R that are right-continuous and whose limits from the left exist

everywhere on I. We always equip D(I) with the uniform norm, denoted by ‖·‖∞. We denote

by M([−∞,∞]) the set of cumulative distribution functions on [−∞,∞] equipped with the

topology of uniform convergence. For U ∈ D(I), let U−1 denote its generalized inverse,

U−1(η) = inf{r ∈ I, U(r) ≥ η}.
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The convergence in distribution in (D([0,∞]), ‖·‖∞) is meant with respect to the σ-algebra

generated by the set of open balls. We denote by
d−→ the convergence in distribution.

We denote by Φ the c.d.f of the standard Gaussian random variable and by φ the corre-

sponding density function.

2. Theoretical results

Define the following mappings:

T1 : M([−∞,∞]) → D([0,∞])

F 7→
{
r 7→

∫

R

∫

R

1{|x−y|≤r}dF (x)dF (y)

}
, (13)

T2 : D([0,∞]) → R

U 7→ U−1(1/4) . (14)

and

T0 = T2 ◦ T1 : M([−∞,∞])) → R (15)

F 7→ U−1(1/4) . (16)

Then, the scale estimator Qn (X1:n,Φ) introduced in (11) may be expressed as

Qn (X1:n,Φ) = c(Φ)T0(Fn) , (17)

where Fn is the empirical c.d.f. based on X1:n.

2.1. Short-range dependence setting.

2.1.1. Properties of the scale estimator. The following lemma gives an asymptotic expansion

for Qn (X1:n,Φ), which is used for deriving a Central Limit Theorem (Theorem 2). It supposes

that the empirical c.d.f. Fn, adequately normalized, converges.

Lemma 1. Let (Xi)i≥1 be a stationary Gaussian process. Assume that there exists a non-

decreasing sequence (an) such that an(Fn−Φµ,σ) converges weakly in (D([0,∞]), ‖·‖∞). Then,

Qn (X1:n,Φ) defined by (11) has the following asymptotic expansion:

an (Qn (X1:n,Φ) − σ) =
an

n

n∑

i=1

IF(Xi, Q,Φµ,σ) + oP (1) , (18)

where, for all x in R,

IF(x,Q,Φµ,σ) = σIF((x− µ)/σ,Q,Φ) , (19)

and

IF(x,Q,Φ) = c(Φ)

(
1/4 − Φ(x+ 1/c(Φ)) + Φ(x− 1/c(Φ))∫

R
φ(y)φ(y + 1/c(Φ))dy

)
. (20)

The proof of Lemma 1 is given in Section 6.
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Remark 1. Note that IF(x,Q,Φ) has the same expression as the influence function of the

functional Q evaluated at the c.d.f. Φ given by (Rousseeuw and Croux, 1993, p. 1277) and

(Ma and Genton, 2000, p. 675). As is well-known from (Huber, 1981, p. 13), the influence

function x 7→ IF(x, T, F ) is defined for a functional T at a distribution F at point x as the

limit

IF(x, T, F ) = lim
ε→0+

ε−1{T (F + ε(δx − F )) − T (F )} ,

where δx is the Dirac distribution at x. Influence functions are a classical tool in robust sta-

tistics used to understand the effect of a small contamination at the point x on the estimator.

We focus here on the case where the process (Xi)i≥1 satisfies the following assumption:

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with autocovariance sequence

γ(k) = E(X1Xk+1) satisfying:

∑

k≥1

|γ(k)| <∞ .

To state the results, we must first define the Hermite rank of the influence function x 7→
IF(x,Q,Φ). Let {Hk} denote the Hermite polynomials having leading coefficient equal to

one. These are H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, · · · . Let f be a function such that∫
f2(z)dΦ(z) <∞. The expansion of f in Hermite polynomials is given by

f(z) =
∞∑

q=τ(f)

αq(f)

q!
Hq(z) , (21)

where αq(f) =
∫
f(z)Hq(z)dΦ(z) and where the convergence is in L2(R,Φ). The index of

the first nonzero coefficient in the expansion, denoted τ(f), is called the Hermite rank of the

function f . (Breuer and Major, 1983, Theorem 1) shows that if

∞∑

h=−∞

|γ(h)|τ(f) <∞ , (22)

then the variance Var
(
n−1/2

∑n
i=1 f(Xi)

)
converges as n goes to infinity to a limiting value

σ2(f) which is given by

σ2(f) = Var [f(X1)] + 2
∞∑

h=1

Cov [f(Xh+1), f(X1)]

=
∞∑

q=τ

α2
q(f)

q!

{
γq(0) + 2

∞∑

h=1

γq(h)

}
. (23)

In addition, the renormalized partial sum is asymptotically Gaussian,

n−1/2
n∑

i=1

f(Xi)
d−→ N

(
0, σ2(f)

)
. (24)
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Concerning the empirical process, Csörgő and Mielniczuk (1996) proved that if

∞∑

h=−∞

|γ(h)| <∞ , (25)

then
√
n(Fn(·)−Φ0,σ(·)) converges in D([−∞,∞]) to a mean-zero Gaussian process W (·) with

covariance

E
(
W (r)W (r′)

)
=

∞∑

q=1

Jq(r)Jq(r
′)

q!

{
γq(0) + 2

∞∑

h=1

γq(h)

}
,

where Jq(r) =
∫

[1{σx≤r} − Φ0,σ(r)]Hq(x)dΦ(x) for all r in [−∞,∞]. These results are used

to prove the following theorem in Section 6.

Theorem 2. Under Assumption (A1), Qn (X1:n,Φ) defined by (11), satisfies the following

central limit theorem:
√
n(Qn (X1:n,Φ) − σ)

d−→ N (0, σ̃2) ,

where σ =
√
γ(0) and the limiting variance σ̃2 is given by

σ̃2 = γ(0)E[IF2(X1/σ,Q,Φ)] + 2γ(0)
∑

k≥1

E[IF(X1/σ,Q,Φ)IF(Xk+1/σ,Q,Φ)] , (26)

IF(·, Q,Φ) being defined in (20).

It is interesting to compare, under Assumption (A1), the asymptotic distribution of the

proposed estimator Qn (X1:n,Φ) with that of the square root of the sample variance

σ̂2
n,X =

1

n− 1

n∑

k=1

(Xk − X̄n)2 =
1

2n(n− 1)

∑

1≤i6=j≤n

(Xi −Xj)
2 , (27)

where X̄n = n−1
∑n

i=1Xi.

Proposition 3. Under Assumption (A1),

√
n (σ̂n,X − σ)

d−→ N (0, σ̃2
cl) ,

where

σ̃2
cl = (2γ(0))−1(γ(0)2 + 2

∑

k≥1

γ(k)2) . (28)

The relative asymptotic efficiency σ̃2
cl/σ̃

2 of the estimator Qn (X1:n,Φ) compared to σ̂n,X is

larger than 82.27%.

The index “cl” stands for “classical”. The proof of Proposition 3 is given in Section 6.
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2.1.2. Properties of the autocovariance estimator. In this section, we establish the limiting

behavior of the autocovariance estimator given, for 0 ≤ h < n, by

γ̂Q(h,X1:n,Φ) =
1

4

[
Q2

n−h (X1:n−h +Xh+1:n,Φ) − Q2
n−h (X1:n−h −Xh+1:n,Φ)

]
. (29)

Theorem 4. Assume that (A1) holds and let h be a non negative integer. Then, the autoco-

variance estimator γ̂Q(h,X1:n,Φ) satisfies the following Central Limit Theorem:
√
n (γ̂Q(h,X1:n,Φ) − γ(h))

d−→ N (0, σ̌2
h) ,

where

σ̌2(h) = E[ψ2(X1, X1+h)] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] , (30)

and the function ψ is defined by

ψ : (x, y) 7→
{

(γ(0) + γ(h)) IF

(
x+ y√

2(γ(0) + γ(h))
, Q,Φ

)
− (γ(0) − γ(h)) IF

(
x− y√

2(γ(0) − γ(h))
, Q,Φ

)}
.

(31)

where IF is defined in (20).

The proof of Theorem 4 is given in Section 6.

Remark 2. Note that ψ has the same expression as the influence function of γQ(·) given in

(Ma and Genton, 2000, p. 675).

Remark 3. Let us now compare under Assumption (A1) the asymptotic distribution of the

proposed estimator with the classical autocovariance estimator defined by

γ̂(h) = n−1
n−h∑

i=1

(Xi − X̄n)(Xi+h − X̄n), 0 ≤ h ≤ n− 1 . (32)

Under (A1), applying (Arcones, 1994, Theorem 4) to f : (x, y) 7→ xy and Xj = (Xj , Xj+h),

where h is a non negative integer, leads to the following result.

Proposition 5. For a given non negative integer h, as n→ ∞,
√
n(γ̂(h) − γ(h))

d−→ N (0, σ̌2
cl(h)) ,

where

σ̌2
cl(h) = γ2(0) + γ(h)2 + 2

∑

k≥1

γ2(k) + 2
∑

k≥1

γ(k + h)γ(k − h) . (33)

Let us now compare σ̌2(h) in (30) with σ̌2
cl(h) in (33). Since the theoretical lower bound

for the asymptotic relative efficiency (ARE) defined by ARE(h) = σ̌2
cl(h)/σ̌

2(h) is difficult to

obtain, the estimation of ARE was calculated in the case where (Xi)i≥1 is an AR(1) process:

Xi = φ1Xi−1 + εi, where (εi)i≥1 is a Gaussian white noise, for φ1 = 0.1, 0.5 and 0.9. These

results are given in Figure 3 which displays ARE for h = 1, . . . , 60. From this figure, we can

see that ARE ranges from 0.82 to 0.90 which indicates empirically that the robust procedure

has almost no loss of efficiency.
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Figure 1. ARE for an AR(1) process for different values of φ1: 0.1, 0.5 and 0.9 from left to right.

2.2. Long-range dependence setting. In this section, we study the behavior of the ro-

bust scale and autocovariance estimators Qn (X1:n,Φ) and γ̂Q(h,X1:n,Φ) in (17) and (29)

respectively. in the case where the process is long-range dependent. Long-range dependent

processes play a key role in many domains, and it is therefore worthwhile to understand the

behavior of such estimators in this context.

(A2) (Xi)i≥1 is a stationary mean-zero Gaussian process with autocovariance γ(k) = E(X1Xk+1)

satisfying:

γ(k) = k−DL(k), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large k.

A classical model for long memory process is the so-called ARFIMA(p, d, q), which is a natural

generalization of standard ARIMA(p, d, q) models. By allowing d to assume any value in

(−1/2, 1/2), a fractional ARFIMA model is defined by Φ(B)(1 − B)dXi = Θ(B)Zi. Here

(Zi)i∈Z is a white Gaussian noise, B denotes the backshift operator, Φ(B) defines the AR-

part, Θ(B) defines the MA part of the process, and (1−B)d =
∑∞

k=0

(
d
k

)
(−B)k is the fractional
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difference operator. For d 6= 0, one has

D = 1 − 2d (34)

(see (6.6) of Taqqu (1975)). For d = 0, we obtain the usual ARMA model. Long memory

occurs for d > 0. As k → ∞, the autocovariance of an ARFIMA(p, d, q) decreases as γ(k) =

Ck2d−1. Such processes satisfy (A2) with D = 1 − 2d, see (Doukhan et al., 2003, Chapter 1)

for example for more details.

Perhaps surprisingly, the proof of the asymptotic properties of Qn (X1:n,Φ) in the long-

range dependence framework does not follow the same steps as in the short-range dependence

case.

To understand why, assume that Assumption (A2) holds with γ(0) = 1. (Dehling and Taqqu,

1989, Theorem 1.1) shows that the difference between the empirical distribution function Fn

and Φ, the c.d.f. of the standard Gaussian distribution N (0, 1) renormalized by nd−1
n , i.e.

nd−1
n (Fn−Φ), converges in distribution to a Gaussian process in the space of cadlag functions

equipped with the topology of uniform convergence. The sequence dn depends on the expo-

nent D governing the decay of the autocorrelation function to zero and also on the slowly

varying function L appearing in (A2): more precisely,

dn = α(D)1/2n1−D/2L1/2(n) (35)

with α(D) = 2(1−D)−1(2−D)−1 for D in (0, 1) defined in (A2). Therefore, Lemma 1 shows

that the asymptotic expansion of an(Qn (X1:n,Φ)− 1) in (18) remains valid with an = nd−1
n ,

and that it remains to study the convergence of d−1
n

∑n
i=1 IF(Xi, Q,Φ). This type of non-

linear functional of stationary long-memory Gaussian sequences have been studied in Taqqu

(1975) and Breuer and Major (1983). The limiting behavior of these functionals depend both

on D and on the Hermite rank of the function IF(·, Q,Φ). According to Breuer and Major

(1983) and Taqqu (1975), under Assumption (A2), two markedly different behavior may

occur, depending on the value of D. If D ∈ (1/2, 1), then, by Breuer and Major (1983),

n−1/2
∑n

i=1 IF(Xi, Q,Φ) converges to a zero-mean Gaussian random variable with finite vari-

ance. If D ∈ (0, 1/2), then nD−1L−1(n)
∑n

i=1 IF(Xi, Q,Φ) converges to a non degenerate (non

Gaussian) random variable, see Taqqu (1975). From these two results and (35), it follows that

d−1
n

n∑

i=1

IF(Xi, Q,Φ) = oP (1) ,

for D 6= 1/2. Therefore, the leading term in the expansion of Qn (X1:n,Φ) − 1 in the short-

memory setting is no longer the leading term in the long-memory case.

This explains why the proof, in the long-memory case, does not follow the same line of

reasoning as that in the short-range dependence case. To derive the asymptotic properties of

Qn (X1:n,Φ) and γ̂Q(·, X1:n,Φ) for long-memory processes, it will be necessary to carry out a

careful study of the U -process

Un(r) =
1

n(n− 1)

∑

1≤i6=j≤n

1{|Xi−Xj |≤r} = T1(Fn)[r] − 1

n
, (36)
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based on the class of kernels {1{|x−y|≤r}, x, y ∈ R, r ≥ 0}. Its asymptotic properties can be

derived from Propositions 10 and 11 in Section 5 which are proved in the companion paper

Lévy-Leduc et al. (2009).

2.2.1. Properties of the scale estimator. The next theorem gives the asymptotic behavior of

the robust scale estimator Qn (X1:n,Φ) under Assumption (A2).

Theorem 6. Under Assumption (A2), Qn (X1:n,Φ) satisfies the following limit theorems as

n tends to infinity:

(i) If D > 1/2,
√
n(Qn (X1:n,Φ) − σ)

d−→ N (0, σ̃2) ,

where σ =
√
γ(0),

σ̃2 = γ(0)E[IF(X1/σ,Q,Φ)2] + 2γ(0)
∑

k≥1

E[IF(X1/σ,Q,Φ)IF(Xk+1/σ,Q,Φ)] ,

and IF(·, Q,Φ) is defined in (20).

(ii) If D < 1/2,

β(D)
nD

L(n)
(Qn (X1:n,Φ) − σ)

d−→ σ

2
(Z2,D(1) − Z2

1,D(1)) ,

where β(D) = B((1−D)/2, D), B denoting the Beta function and the processes Z1,D(·)
and Z2,D(·) are defined in (54) and (55).

Theorem 6 is proved in Section 6.

Remark 4. Note that in the case (ii) the limit distribution is not centered and is asymmet-

ric. Moreover, it can be proved (see Lévy-Leduc et al. (2009)) that E[Z2,D(1) − Z1,D(1)2] =

−2β(D)/(−D + 1)(−D + 2).

Remark 5. Under Assumption (A2), it is interesting to compare the asymptotic distribution

of the proposed estimator Qn (X1:n,Φ) with that of the square root of the sample variance

σ̂2
n,X defined in (27).

Proposition 7. Suppose Assumption (A2). Then as n→ ∞,

(a) if D > 1/2,
√
n (σ̂n,X − σ)

d−→ N (0, σ̃2
cl) ,

where σ̃2
cl is given in (28)

(b) if D < 1/2,

β(D)nDL(n)−1(σ̂n,X − σ)
d−→ σ/2

(
Z2,D(1) − Z2

1,D(1)
)
. (37)

The rates of convergence of the square root of the sample variance σ̂n,X and of the robust

estimator Qn (X1:n,Φ) are identical. Moreover, there is no loss of efficiency when D < 1/2.

The proof of Proposition 7 is in Section 6.
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2.2.2. Properties of the autocovariance estimator. In this section, we study the asymptotic

properties of γ̂Q(·, X1:n,Φ) based on the asymptotic properties of Qn (X1:n,Φ).

Theorem 8. Assume that (A2) holds and that L has three continuous derivatives. Assume

also that Li(x) = xiL(i)(x) satisfy: Li(x)/x
ǫ = O(1), for some ǫ in (0, D), as x tends to

infinity, for all i = 0, 1, 2, 3, where L(i) denotes the ith derivative of L. Let h be a non

negative integer. Then, γ̂Q(h,X1:n,Φ) satisfies the following limit theorems as n tends to

infinity.

(i) If D > 1/2,
√
n (γ̂Q(h,X1:n,Φ) − γ(h))

d−→ N (0, σ̌2(h)) ,

where

σ̌2(h) = E[ψ(X1, X1+h)2] + 2
∑

k≥1

E[ψ(X1, X1+h)ψ(Xk+1, Xk+1+h)] ,

ψ being defined in (31).

(ii) If D < 1/2,

β(D)
nD

L̃(n)
(γ̂Q(h,X1:n,Φ) − γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1) − Z1,D(1)2)

where β(D) = B((1 −D)/2, D), B denotes the Beta function, the processes Z1,D(·) and

Z2,D(·) are defined in (54) and (55), and

L̃(n) = 2L(n) + L(n+ h)(1 + h/n)−D + L(n− h)(1 − h/n)−D . (38)

Theorem 8 is proved in Section 6.

Remark 6. Note that the assumptions on Li made in Theorem 8 are obviously satisfied if L

is the logarithmic function or a power of it.

Proposition 9. Under Assumption (A2) with D < 1/2, the robust autocovariance estimator

γ̂Q(h,X1:n,Φ) has the same asymptotic behavior as the classical autocovariance estimator

(32). There is no loss of efficiency.

Proposition 9 is proved in Section 6.

3. Numerical experiments

In this section, we investigate the robustness properties of the estimator γ̂Q(h,X1:n,Φ) in

(12), using Monte Carlo experiments.

We shall regard the observations Xt, t = 1, . . . , n, as a stationary series Yt, t = 1, . . . , n,

corrupted by additive outliers of magnitude ω. Thus we set

Xt = Yt + ωWt, (39)

whereWt are i.i.d. random variables such that P (W = −1) = P (W = 1) = p/2 and P (W = 0) =

1 − p, where E[W ] = 0 and E[W 2] = Var(W ) = p. Observe that W is the product of

Bernoulli(p) and Rademacher independent random variables; the latter equals 1 or −1, both

with probability 1/2. (Yt) is a stationary time series and it is assumed that Yt and Wt are
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independent random variables. The empirical study is based on 5000 independent replications

with n = 100, 500, p = 5%, 10% and ω = 10. Other cases were also simulated, for example,

series with ω = 3, 5 which are magnitudes that cause less impact on the estimates compared

with ω = 10. These additional results are available upon request.

We consider first the case where Yt follows a Gaussian AR(1) process, that is, Yt =∑
j≥0 φ

j
1Zt−j with φ1 = 0.2, 0.5 and {Zt} i.i.d N (0, 1). Then we suppose that, Yt are Gaussian

ARFIMA(0, d, 0) processes, that is,

Yt = (I −B)−dZt =
∑

j≥0

Γ(j + d)

Γ(j + 1)Γ(d)
Zt−j (40)

with d= 0.2, 0.45 and {Zt} i.i.d N (0, 1).

Classically, scale is measured by the standard deviation σ. The robust measure of scale we

consider here is Q(FX), defined in (5). Recall that one has σ = Q(FX) in the Gaussian case

(see 7). We want to compare their respective estimators σ̂n,X defined in (27) and Qn (X1:n,Φ)

defined in (17).

The standard deviations of the AR(1) models are Q(FY ) = σY = 1.0206 and Q(FY ) =

σY = 1.1547 for φ1= 0.2 and φ1 = 0.5, respectively. In the case of ARFIMA processes, the

standard deviations are Q(FY ) = σY = 1.0481 when d = 0.2 and Q(FY ) = σY = 1.9085 when

d = 0.45. This is because the variance of AR(1) is (1 − φ2
1)

−1 and that of ARFIMA(0,d,0)

is Γ(1 − 2d)/Γ2(1 − d) (see Brockwell and Davis (1991)). Figure 2 and Table 1 involve AR

processes, and Figures 3, 4 and 5 involve the ARFIMA processes.

3.1. Short-range dependence case. Figure 2 gives some insights on Theorem 2 and Propo-

sition 3. In the left part of Figure 2, the empirical distribution of the quantities
√
n(Qn (X1:n,Φ)−

σY ) and
√
n(σ̂n − σY ) are displayed. Both present shapes close to the Gaussian density, and

their standard deviations are equal to 0.8232 and 0.7377, respectively. These empirical stan-

dard deviations are close to 0.8233 and 0.7500 which are the values of the asymptotic standard

deviation σ̃ in (26) and that of
√
n(σ̂n − σY ) in (28), respectively. The value 0.8233 was ob-

tained through numerical simulations and the value 0.7500 from the fact that for an AR(1)

γ(k) = φk
1(1 − φ2

1)
−1 and hence σ̃2

cl = (1 + 2φ2
1)/(2(1 − φ2

1)) in (28). Hence the empirical

evidence fits with the theoretical results of Theorem 2 and Proposition 3.

In the right part of Figure 2, we display the results when outliers are present. The empirical

distribution of
√
n(σ̂n − σY ) is clearly located far away from zero. One can also observe the

increase in the variance. The quantity
√
n(Qn (X1:n,Φ)−σY ) looks symmetric and is located

close to zero.

We now turn to the estimation of the autocovariances. We want to use them to get estimates

for the AR(1) coefficient φ1. The results are in Table 1. In this table, φ̂1,γ and φ̂1,Q denote the

average of the Yule-Walker estimates of the AR coefficients based on the classical estimator of

the covariance γ and the robust autocovariance estimator γ̂Q(h,X1:n,Φ) in (12), respectively.

The numbers in parentheses are the corresponding square root of the sample mean squared

errors. The classical estimates were obtained using the subroutine DARMME in FORTRAN

which uses a method of moments. The robust autocovariance and autocorrelation estimates

were calculated using the code given in Croux and Rousseeuw (1992).
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Figure 2. Empirical densities of the quantities
√

n(Qn (X1:n, Φ) − σY ) (plain line) and
√

n(bσn − σY ) (dotted line) of the AR(1) model with φ1 = 0.2, n=500, without outliers (left)

and with outliers with p = 10% and ω = 10 (right).

Table 1. Results for the estimation of AR(1) model with ω =10

p = 0 p = 5% p = 10%

φ1 n bφ1,γ
bφ1,Q

bφ1,γ
bφ1,Q

bφ1,γ
bφ1,Q

0.2 100 0.1818 0.1831 0.0312 0.2212 0.01530 0.2651

(0.0112) (0.0128) (0.0376) (0.0229) (0.0435) (0.0388)

500 0.1967 0.1948 0.0318 0.2381 0.0163 0.2881

(0.0019) (0.0025) (0.0303) (0.0051) (0.0357) (0.0150)

0.5 100 0.4767 0.4747 0.0998 0.5762 0.0495 0.6924

(0.0084) (0.0106) (0.1740) (0.0262) (0.2142) (0.0712)

500 0.4967 0.4927 0.1030 0.6012 0.05647 0.7216

(0.0015) (0.0021) (0.1598) (0.0141) (0.1988) (0.0558)

It can be seen from Table 1 that both autocovariances yield similar estimates for φ1 when

the process does not contain outliers. However, the picture changes significantly when the

series is contaminated by atypical observations. As expected, the estimates from the classical

autocovariance estimator are extremely sensitive to the presence of additive outliers. As noted

in Fajardo et al. (2009), for a fixed lag k, the classical autocorrelation tends to zero as the

weight ω → ∞, and this produces a loss of memory property (that is, the dependence structure

of the model is reduced), and consequently this leads to parameter estimates with significant

negative bias. It is worth noting that the estimator based on the robust autocovariance (29)

yields much more accurate estimates when the data contain outliers.

3.2. Long-range dependence case. In the case of the long-memory process ARFIMA(0, d, 0)

defined in (40), we choose d = 0.2 and d = 0.45, corresponding respectively to D = 0.6 and

D = 0.1 (see 34). In the first case D > 1/2, in the second, D < 1/2, corresponding to the two

cases of Theorem 6. For d = 0.2, the empirical density functions of
√
n(Qn (X1:n,Φ)−σY ) and√

n(σ̂n − σY ) are displayed in Figure 3 with and without outliers. When there is no outlier,

both shapes are similar to that of the Gaussian density, and their standard deviations are
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equal to 0.9043 and 0.8361, respectively, corresponding to an asymptotic relative efficiency of

85.48%. As shown in the right part of Figure 3, the classical scale estimator σ̂n is much more

sensitive to outliers than the robust one Qn. The empirical density in the case of outliers is

centered around 50.

Figure 3. Empirical densities of
√

n(Qn (X1:n, Φ) − σY ) (plain line) and
√

n(bσn − σY )

(dotted line) for the ARFIMA(0, d, 0) model with d = 0.2, n=500 without outliers (left) and

with outliers with p = 10% and ω = 10 (right).

To illustrate part (ii) of Theorem 6, we consider the empirical density functions of the

quantities n1−2d(Qn (X1:n,Φ)−σY ) and n1−2d(σ̂n−σY ) when d = 0.45 (D = 0.6) as displayed

in Figure 4. The left part of Figure 4 shows densities having means close to -1.1161 which

is the value of the theoretical mean given in Remark 4. Both curves present, in fact, similar

empirical standard deviation which is in accordance with Proposition 7. The impact of outliers

on the estimates is clearly shown in the right side of Figure 4 where one observes patterns

similar to those of the previous examples.

Figure 4. Empirical densities of the quantities n1−2d(Qn (X1:n, Φ)−σY ) (plain line) and

n1−2d(bσn − σY ) (dotted line) of the ARFIMA(0, d, 0) model with d = 0.45, n=500, without

outliers (left) and with outliers p = 10% and ω = 10 (right).

Finally, the plots of the autocorrelations are displayed in the left and right parts of Figure

5 for models without and with outliers, respectively. The figures also provide the population
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autocorrelation function ρ(h) = Γ(1 − d)Γ(h+ d)/(Γ(d)Γ(1 + h− d)) as a function of the lag

h (Hosking (1981)).

Figure 5. Sample correlations of the ARFIMA(0, d, 0) model with d = 0.2, n=500 without

outliers (left) and with outliers with p = 10% and ω = 10 (right). (a) is the population

correlation, and (b) and (c) are the robust and the classical sample autocorrelations, respec-

tively.

In the absence of atypical observations (left part of Figure 5), both sample functions display

a similar behavior. However, when the data contains outliers (right part of Figure 5) the

classical sample autocorrelation is clearly distorted.

3.3. Non-Gaussian observations. We now examine the behavior of the autocovariance es-

timator when it is applied to non Gaussian observations. To do so, we generated observations

(Xt)1≤t≤n as follows,

Xt = φ1Xt−1 + Zt ,

where φ1 = 0.9, ε = 0.4, Zt = Wt + εY 2
t , where Wt and Yt are independent random variables

such that (Wt) and (Yt) are i.i.d standard Gaussian random variables. An example of a

realization of (Zt)1≤t≤n is given in the histogram of Figure 6 with n = 500. As we can see from

this figure, the presence of ε in the definition of Zt produces an asymmetry in the data. In the

right part of this figure, we displayed the average of the robust autocovariance γ̂Q(h,X1:n,Φ)

in (29) and the classical autocovariance γ̂(h) defined in Remark 3, for h = 1, . . . , 40 and 1000

replications. From this figure, we can see that the robust autocovariance estimator does not

seem to be affected by the skewness of the data.

4. An application

The Nile data is used here to illustrate some of the robust methodologies discussed previ-

ously. The Nile River data set is a well-known and interesting time series, which has been

extensively analyzed. This data is discussed in detail in the book by Beran (1994). It is first

introduced in Section 1.4 on p. 20, and is completely tabulated on pp. 237–239. Beran (1994)

took this data from an earlier book by (Toussoun, 1925, pp. 366–404). The data consists of

yearly minimal water levels of the Nile river measured at the Roda gauge, near Cairo, for the

years 622–1284 AD (663 observations); The units for the data as presented by Beran (1994)
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Figure 6. Left: Histogram of one realization of (Zt)1≤t≤500. Right: Theoretical autoco-

variance(’.’), robust autocovariance (’◦’), classical autocovariance (’⋆’) for h = 1, . . . , 40.

are centimeters (presumably above some fixed reference point). The empirical mean and the

standard deviation of the data are equal to 1148 and 89.05, respectively.

The question has been raised as to whether the Nile time series contains outliers; see for

example Beran (1992), Robinson (1995), Chareka et al. (2006) and Fajardo et al. (2009). The

test procedure developed by Chareka et al. (2006), suggests the presence of outliers at 646 AD

(p-value 0.0308) and at 809 (p-value 0.0007). Another possible outlier is at 878 AD. A plot of

the time series where the observations which have been judged to be outliers are marked, is

shown in the left part of Figure 7, and the right part of this figure displays the histogram of

the data. Although the theory developed in this paper is related to Gaussian processes, we

believe that the small asymmetry of the data does not compromise the use of this series as

an illustration of our robust methodology. A way to avoid this asymmetry is to consider the

logarithm of the data. However, this does not make a significant difference in the estimates.

Figure 7. Left: The Nile River data plot. Right: Histogram of the Nile River data.
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The left part of Figure 8 displays plots of the classical and robust sample autocorrelation

functions of the original data. The autocorrelation values from the former are smaller than

those of the latter one. However, the difference between the autocorrelations may be not

large enough to suggest the presence of outliers. Thus, to better understand the influence of

outliers on the sample autocorrelation functions in practical situations a new dataset with

artificial outliers was generated. We replaced the presumed outliers detected by Chareka et al.

(2006) by the mean plus 5 or 10 standard deviations. The sample autocorrelations (robust

and classical ones) were again calculated, see the right part of Figure 8. As expected, the

values of the robust autocorrelations remained stable. However, the classical autocorrelations

were significantly affected by the increase of the size of the observation. This is in accordance

with the results presented in the simulation section.

Figure 8. Left: Classical (plain line) and robust (dotted line) sample auto-

correlation functions of the Nile River data. Right: Classical (plain line) and

robust (dotted line) sample autocorrelation functions of the Nile River data

and classical sample autocorrelation functions of the Nile River data with arti-

ficial outliers at the times detected by Chareka et al. (2006) (original data plus

5 standard deviations with “ � ” and original data plus 10 standard deviations

with “ ▽ ”).

5. Asymptotic behavior of U-processes

Consider the U -process {UG
n (r), r ∈ I} satisfying

UG
n (r) =

1

n(n− 1)

∑

1≤i6=j≤n

1{G(Xi,Xj)≤r} , r ∈ I (41)

based on the class of kernels

kG(x, y, r) = 1{G(x,y)≤r} . (42)

where I is an interval included in R, G is a symmetric function i.e. G(x, y) = G(y, x) for all

x, y in R, and the process (Xi)i≥1 satisfies Assumption (A2) with γ(0) = 1.
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The asymptotic properties of these U -processes have been studied in Lévy-Leduc et al.

(2009). They are based on the computation of the Hermite rank of the class of functions

{1{G(·,·)≤r} − UG(r), r ∈ I} where

UG(r) =

∫

R2

1{G(x,y)≤r}φ(x)φ(y)dxdy , for all r ∈ I . (43)

The Hermite rank of the class of functions {1{G(·,·)≤r}−U(r), r ∈ I} is obtained by expanding

the function 1{G(·,·)≤r} in the basis of Hermite polynomials with leading coefficient equal to

1:

1{G(x,y)≤r} =
∑

p,q≥0

αp,q(r)

p!q!
Hp(x)Hq(y) , for all x, y in R , (44)

where αp,q(r) = E
[
1{G(X,Y )≤r}Hp(X)Hq(Y )

]
, X and Y being independent standard Gaussian

random variables. The first few Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) =

x2 − 1, H3(x) = x3 − 3x. Note that α0,0(r) is equal to UG(r) for all r, where UG(r) is defined

in (43). The previous expansion can also be rewritten as

1{G(x,y)≤r} − UG(r) =
∑

p,q≥0

p+q≥m

αp,q(r)

p!q!
Hp(x)Hq(y) , (45)

where m = m(r) is called the Hermite rank of the function 1{G(·,·)≤r}−UG(r) when r is fixed.

We state the results for family of kernels having Hermite rank equal to m = 2 (this is all

we need here) and refer to Lévy-Leduc et al. (2009) for other cases.

Proposition 10. Let I be a compact interval of R, let kG(·, ·, r) be defined in (42), and let

kG,1(x, r) = E [kG(x, Y, r)] , x ∈ R , r ∈ I , (46)

where Y is a standard Gaussian variable. Suppose that the Hermite rank of the class of

functions {kG(·, ·, r) − UG(r) , r ∈ I} is m = 2 and that Assumption (A2) is satisfied with

γ(0) = 1 and 1/2 < D < 1. Assume that kG satisfies the following three conditions:

(i) There exists a positive constant C such that for all s, t in I, u, v in R,

E [|kG(X + u, Y + v, s) − kG(X + u, Y + v, t)|] ≤ C|t− s| , (47)

where (X,Y ) is a standard Gaussian random vector.

(ii) There exists a positive constant C such that for all ℓ ≥ 1 and s, t in I, u, v in R,

E [|kG(X1 + u,X1+ℓ + v, t) − kG(X1, X1+ℓ, t)|] ≤ C|u− v| . (48)

E [|kG(X1, X1+ℓ, s) − kG(X1, X1+ℓ, t)|] ≤ C|t− s| , (49)

(iii) There exists a positive constant C such that for all t in I, and x, u, v in R,

|kG,1(x+ u, t) − kG,1(x+ v, t)| ≤ C|u− v| , (50)

|kG,1(x, s) − kG,1(x, t)| ≤ C|t− s| . (51)
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Then the U -process {√n(UG
n (r)−UG(r)), r ∈ I} defined in (41) and (43) converges weakly in

the space of cadlag functions on I, D(I), equipped with the topology of uniform convergence

to the zero mean Gaussian process {WG(r), r ∈ I} with covariance structure given by

E[WG(s)WG(t)] = 4 Cov(kG,1(X1, s), kG,1(X1, t))

+ 4
∑

ℓ≥1

Cov(kG,1(X1, s), kG,1(Xℓ+1, t)) + Cov(kG,1(X1, t), kG,1(Xℓ+1, s)) . (52)

Moreover, for a fixed r in I, as n tends to infinity,

√
n(UG

n (r) − UG(r)) =
2√
n

n∑

i=1

[
kG,1(Xi, r) − UG(r)

]
+ oP (1) . (53)

We now consider the case where D < 1/2. In this case, the normalization depends, as

expected, on D and the slowly varying function L and the limiting distribution is no longer a

Gaussian process. Let (Z1,D(t))t∈R+
denote the standard fractional Brownian motion (fBm)

and (Z2,D(t))t∈R+
the Rosenblatt process. They are defined through multiple Wiener-Itô

integrals and given by

Z1,D(t) =

∫

R

[∫ t

0
(u− x)

−(D+1)/2
+ du

]
dB(x), 0 < D < 1 , (54)

and

Z2,D(t) =

∫ ′

R2

[∫ t

0
(u− x)

−(D+1)/2
+ (u− y)

−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 , (55)

where B is the standard Brownian motion, see Fox and Taqqu (1987). The symbol
∫ ′

means

that the domain of integration excludes the diagonal. Introduce also the Beta function

B(α, β) =

∫ ∞

0
yα−1(1 + y)−α−βdy =

Γ(α)Γ(β)

Γ(α+ β)
, α > 0, β > 0 . (56)

Proposition 11. Let I be a compact interval of R Suppose that the Hermite rank of the class

of functions {kG(·, ·, r) − UG(r) , r ∈ I} is m = 2 and that Assumption (A2) is satisfied with

γ(0) = 1 and D < 1/2. Assume the following:

(i) There exists a positive constant C such that, for all ℓ ≥ 1 and for all s, t in I,

E[|kG(X1, X1+ℓ, s) − kG(X1, X1+ℓ, t)|] ≤ C|t− s| . (57)

(ii) UG is a Lipschitz function

(iii) The function Λ̃ defined, for all s in I, by

Λ̃(s) = E[kG(X,Y, s)(|X| + |XY | + |X2 − 1|)] , (58)

where X and Y are independent standard Gaussian random variables, is also a Lips-

chitz function.

Then, the U -process {UG
n (r) − UG(r), r ∈ I} defined in (41) and (43) has the following

asymptotic properties: {
nDL−1(n)

(
UG

n (r) − UG(r)
)
; r ∈ I

}
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converges weakly in the space of cadlag functions D(I), equipped with the topology of uniform

convergence, to

{β(D)−1
[
α1,1(r)Z1,D(1)2 + α2,0(r)Z2,D(1)

]
; r ∈ I} ,

where the fractional Brownian motion Z1,D(·) and the Rosenblatt process Z2,D(·) are defined in

(54) and (55) respectively and where β(D) = B((1−D)/2, D), B denoting the Beta function,

defined in (56).

Propositions 10 and 11 will be applied to the U -process Un(r) in (36) with

U(r) =

∫

R2

1{‖x−y|≤r}dF (x)dF (y) = T1(F )[r] , (59)

with T1 given in (13). By Lemma 14, the Hermite rank of the class of functions {1|x−y|≤r −
U(r), x, y ∈ R, r ∈ I} is equal to 2 where I = [r0 − η, r0 + η] for some positive η defined in

Lemma 14 and where r0 = 1/c(Φ) (see (10)) is such that

T1(Φ)[r0] = T1(Φ)[1/c(Φ)] = 1/4 . (60)

6. Proofs

Proof of Lemma 1. Denote by F the c.d.f. Φµ,σ of X1. Since an(Fn − F ) converges in distri-

bution in the space of cadlag functions equipped with the topology of uniform convergence,

the asymptotic expansion (18) can be deduced from the functional Delta method stated e.g.

in Theorem 20.8 of van der Vaart (1998). To show this, we have to prove that T0 = T1 ◦ T2

is Hadamard differentiable, where T1 and T2 are defined in (13) and (14) respectively and

that the corresponding Hadamard differential is defined and continuous on the whole space of

cadlag functions. For a definition of Hadamard differentiability, we refer to (van der Vaart,

1998, Chapter 20).

We prove first that the Hadamard differentiability of the functional T1 defined in (13). Let

(gt) be a sequence of cadlag functions with bounded variations such that ‖gt − g‖∞ → 0, as

t→ 0, where g is a cadlag function. For any non negative r, we consider

t−1 {T1(F + tgt)[r] − T1(F )[r]}

= 2

∫

R

∫

R

1{|x−y|≤r}dF (x)dgt(y) + t

∫

R

∫

R

1{|x−y|≤r}dgt(x)dgt(y) .

Since
∣∣∣∣
∫

R

∫

R

1{|x−y|≤r}dF (x)dgt(y) −
∫

R

∫

R

1{|x−y|≤r}dF (x)dg(y)

∣∣∣∣

=

∣∣∣∣
∫

R

(gt(x+ r) − g(x+ r)) dF (x) −
∫

R

(gt(x− r) − g(x− r)) dF (x)

∣∣∣∣ ≤ 2 ‖gt − g‖∞ → 0 ,

as t tends to zero, the Hadamard differential of T1 at g is given by:

(DT1(F ).g)(r) = 2

∫

R

∫

R

1{|x−y|≤r} dF (x)dg(y) = 2

∫

R

{g(x+ r) − g(x− r)}dF (x) .
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By Lemma 21.3 in van der Vaart (1998), T2 is Hadamard differentiable. Finally, using the

Chain rule (Theorem 20.9 in van der Vaart (1998)), we obtain the Hadamard differentiability

of T0 with the following Hadamard differential:

DT0(F ).g = −(DT1(F ).g)(T0(F ))

(T1(F ))′[T0(F )]
= −2

∫
R
{g(x+ T0(F )) − g(x− T0(F ))}dF (x)

(T1(F ))′[T0(F )]
. (61)

In view of the last expression, DT0(F ) is a continuous function of g and is defined on the

whole space of cadlag functions. Thus, by Theorem 20.8 of van der Vaart (1998), we obtain:

an(Qn (X1:n,Φ) −Q(F )) = c(Φ) DT0(F ).{an(Fn − F )} + oP (1) , (62)

where c(Φ) is the constant defined in (10). By (13), T1(F )[r] =
∫

R
[F (x+ r)−F (x− r)]dF (x)

and since F (·) = Φµ,σ(·) = Φ((· − µ)/σ), we get

(T1(F ))′[r] =
2

σ

∫

R

Φ
(
y +

r

σ

)
Φ(y)dy .

Since σ = Q(Φµ,σ) = c(Φ)T0(F ) by (5), we get

(T1(F ))′[T0(F )] = 2σ−1

∫
φ(y)φ(y + 1/c(Φ))dy . (63)

Applying (61) with T0(F ) = σ/c(Φ), using (63), and setting g = an(Fn − F ), we get

DT0(F ).{an(Fn − F )} = An −Bn , (64)

where

An = an

(
(T1(F ))′[T0(F )]

)−1
∫

R

{
F

(
x+

σ

c(Φ)

)
− F

(
x− σ

c(Φ)

)}
dF (x) (65)

and Bn has the same expression with F replaced by Fn. The integral in An equals
∫

R

∫

R

1{|y−x|≤σ/c(Φ)}dF (x)dF (y) = T1(F )[T0(F )] = 1/4 , (66)

by definition (see (5)). The corresponding integral in Bn equals

1

n

n∑

i=1

{
F

(
Xi +

σ

c(Φ)

)
− F

(
Xi −

σ

c(Φ)

)}

=
1

n

n∑

i=1

{
Φ

(
Xi − µ

σ
+

1

c(Φ)

)
− Φ

(
Xi − µ

σ
− 1

c(Φ)

)}
.

The result follows from (62), (61), (64), (63) and the above expressions for An and Bn. �

Proof of Theorem 2. Assumption (A1) and the Theorem of Csörgő and Mielniczuk (1996)

implies that
√
n(Fn − Φ0,σ) converges in distribution to a Gaussian process in the space of

cadlag functions equipped with the topology of uniform convergence. Thus, the asymptotic

expansion of an(Qn (X1:n,Φ) − σ) obtained in (18) is valid with an =
√
n. We thus have to

prove a CLT for n−1/2
∑n

i=1 IF(Xi/σ,Q,Φ). Using Lemma 12 below, we note that the Hermite

rank of IF(·, Q,Φ) is equal to 2 and the conclusion follows by applying (Breuer and Major,

1983, Theorem 1). �



ROBUST ESTIMATION OF THE AUTOCOVARIANCE FUNCTION 23

Proof of Proposition 3. Note that σ̂2
n,X = γ(0)σ̂2

n,Y , where (Yi)i≥1 satisfies (A1) with γ(0) = 1.

Observe that σ̂2
n,Y − 1 is a U -statistic with kernel k(x, y) = (x − y)2/2 − 1. The Hoeffding

decomposition of this kernel is given by k(x, y) = (x2 − 1)/2 + (y2 − 1)/2−xy. From this, we

obtain the corresponding Hoeffding decomposition of σ̂2
n,Y − 1 as

σ̂2
n,Y − 1 =

1

n

n∑

i=1

H2(Yi) −
1

n(n− 1)

∑

1≤i6=j≤n

YiYj . (67)

Under Assumption (A1), the first term of this decomposition is the leading one. Then, using

(Breuer and Major, 1983, Theorem 1), we get that
√
n(σ̂2

n,X − σ2) converges to a zero-mean

Gaussian random variable having a variance equal to 2(γ(0)2+2
∑

k≥1 γ(k)
2). Using the Delta

method to go from σ̂2
n,X to σ̂n,X , setting f(x) =

√
x, so that f ′(σ2) = 1/(2

√
σ2) = 1/(2σ), we

get that the asymptotic variance of
√
n (σ̂n,X − σ) is thus equal to (28).

By Lemma 12, the Hermite rank of IF(., Q,Φ) is equal to 2, hence using (Arcones, 1994,

Lemma 1), σ̃2 defined in (26) satisfies

σ̃2 ≤ γ(0)−1
E[IF(X1/σ,Q,Φ)2]{γ(0)2 + 2

∑

k≥1

γ(k)2} .

Finally, in this case, using that E[IF(X1/σ,Q,Φ)2] ≈ 0.6077 (Rousseeuw and Croux, 1993,

p. 1278), the relative asymptotic efficiency σ̃2
cl/σ̃

2 of Qn (X1:n,Φ) compared to σ̂n,X is larger

than 82.27% since

(2γ(0))−1(γ(0)2 + 2
∑

k≥1 γ(k)
2)

γ(0)−1E[IF(X1/σ,Q,Φ)2]{γ(0)2 + 2
∑

k≥1 γ(k)
2} ≈ 0.5/0.6077 ≈ 82.27% .

�

Proof of Theorem 4. Let Φσ,+ and Φσ,− denote the c.d.f of (Xi+Xi+h)i≥1 and (Xi−Xi+h)i≥1,

respectively. Let also denote by F+,n−h and F−,n−h the empirical c.d.f of (Xi +Xi+h)1≤i≤n−h

and (Xi −Xi+h)1≤i≤n−h, respectively. Since (Xi)i≥1 satisfy Assumption (A1), it is the same

for (Xi+Xi+h)i≥1 and (Xi−Xi+h)i≥1 with scales equal to Q(Φσ,+) and Q(Φσ,−), respectively.

Thus, using the Theorem of Csörgő and Mielniczuk (1996), we obtain that
√
n− h(F+,n−h −

Φσ,+) converges in distribution to a Gaussian process in the space of cadlag functions equipped

with the topology of uniform convergence and that the same holds for
√
n− h(F−,n−h −

Φσ,−). As a consequence, the expansion (18) is valid for Qn−h (X1:n−h +Xh+1:n,Φ) and

Qn−h (X1:n−h −Xh+1:n,Φ) with an−h =
√
n− h, that is

√
n− h [Qn−h (X1:n−h ±Xh+1:n,Φ) −Q(Φσ,±)] =

1√
n− h

n−h∑

i=1

IF(Xi±Xi+h, Q,Φσ,±)+oP (1) .
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Then, applying the Delta method (van der Vaart, 1998, Theorem 3.1) with the transformation

b(x) = x2, b′(x) = 2x, we get

√
n− h

[
Qn−h (X1:n−h ±Xh+1:n,Φ)2 −Q2(Φσ,±)

]

=
2Q(Φσ,±)√
n− h

n−h∑

i=1

IF(Xi ±Xi+h, Q,Φσ,±) + oP (1) .

Hence γ̂Q(h,X1:n,Φ) in (29) satisfies the following asymptotic expansion:

√
n− h

(
γ̂Q(h,X1:n,Φ) −

{
Q2(Φσ,+) −Q2(Φσ,−)

}
/4
)

=
1√
n− h

n−h∑

i=1

ψ(Xi, Xi+h) + oP (1) ,

(68)

where for all x and y,

ψ(x, y) =
1

2
{Q(Φσ,+) IF (x+ y,Q,Φσ,+) −Q(Φσ,−) IF (x− y,Q,Φσ,−)} .

Using the identity (19), ψ has the expression given in (31). We have now to prove a CLT for

(n− h)−1/2
∑n−h

i=1 ψ(Xi, Xi+h). Using Lemma 13, the definition of the Hermite rank given in

(Arcones, 1994, p. 2245) and Assumption (A1), we obtain that Condition (2.40) of Theorem

4 (Arcones, 1994, p. 2256) is satisfied with τ = 2. This concludes the proof of the theorem

by observing that {Q2(Φσ,+) −Q2(Φσ,−)}/4 = E[X1X1+h] = γ(h) (see 7). �

Proof of Theorem 6. Since, by scale invariance, Qn (X1:n,Φ)−σ = σ(Qn (X1:n/σ,Φ)− 1), we

shall focus in the sequel on the case γ(0) = 1. First, note that using Lemma 14 below the

Hermite rank of the class of functions {1{|·−·|≤r} −U(r) , r ∈ [r0 − η, r0 + η]} is m = 2, where

U is defined in (59) and r0 in (60).

(i) Suppose first D > 1/2. Let us verify that the assumptions of Proposition 10 hold.

Conditions (47) and (48) are easily verified. Let us check Condition (49). Note that for all

ℓ ≥ 1, X1 −X1+ℓ ∼ N (0, 2(1 − γ(ℓ))), thus if t ≤ s, there exists a positive constant C such

that,

E[k(X1, X1+ℓ, s)−k(X1, X1+ℓ, t)] = P(t ≤ |X1−X1+ℓ| ≤ s) ≤ 2√
4π(1 − γ(ℓ))

|t−s| ≤ C|t−s| ,

where k(x, y, r) = 1{|x−y|≤r}. Since γ(ℓ) → 0 as ℓ→ ∞, we obtain (49).

Conditions (50) and (51) are satisfied since

k1(x, r) = E[1{|x−Y |≤r}] = Φ(x+ r) − Φ(x− r) . (69)

Now consider the process

{√n(T1(Fn)[r] − T1(F )[r]), r ∈ [r0 − η, r0 + η]} , (70)

where F = Φ and

T1(F )[r] =

∫

R2

1{|y−x|≤r}dΦ(x)dΦ(y) =

∫

R

[Φ(x+ r) − Φ(x− r)]dΦ(x) .



ROBUST ESTIMATION OF THE AUTOCOVARIANCE FUNCTION 25

By Proposition 10, the process (70) converges weakly to a Gaussian process in the space of

cadlag functions equipped with the topology of uniform convergence for some η > 0 when

D > 1/2.

(ii) Suppose now D < 1/2. Let us check that the assumptions of Proposition 11 hold.

Condition (57) holds since it is the same as Condition (49). Since k1 is a Lipschitz function,

so is U defined in (59). Let us now check Condition (58). If s ≤ t

∫

R

∫

R

1{s<x−y≤t}(|x| + |xy| + |x2 − 1|)φ(x)φ(y)dxdy =

∫

R

(∫ x−s

x−t
φ(y)dy

)
|x|φ(x)dx

+

∫

R

(∫ x−s

x−t
|y|φ(y)dy

)
|x|φ(x)dx+

∫

R

(∫ x−s

x−t
φ(y)dy

)
|x2 − 1|φ(x)dx .

Since φ(·) and |.|φ(·) are bounded and that the moments of Gaussian random variables are

all finite, we get (58). Then, applying Proposition 11 and Lemma 14 leads to the weak

convergence of the process {β(D)nD/L(n)(T1(Fn)[r] − T1(F )[r]), r ∈ [r0 − η, r0 + η]} to

{φ̇(r/
√

2)(Z2,D(1) − Z1,D(1)2); r ∈ [r0 − η, r0 + η]}.
We now want to use the functional Delta method as in the proof of Lemma 1 in both cases

(i) and (ii).

By (van der Vaart, 1998, Lemma 21.3), T2 defined in (14) is Hadamard differentiable with

the following Hadamard differential: DT2(T1(Φ)) ·g = −g(r0)/(T1(Φ))′[r0] . Thus DT2(T1(Φ))

is a continuous function with respect to g. By the functional Delta method, with T0 = T2 ◦T1,

we obtain the following expansion:

an(Qn (X1:n,Φ)−Q(Φ)) = c(Φ) an(T0(Fn)−T0(Φ)) = −c(Φ) an
(T1(Fn) − T1(Φ))[r0]

(T1(Φ))′[r0]
+oP (1) ,

(71)

where an =
√
n in the case (i) and an = β(D)nD/L(n) in the case (ii). In case (i),

−c(Φ)
√
n

(T1(Fn) − T1(Φ))[r0]

(T1(Φ))′[r0]

d−→ N (0, σ2
1) ,

where σ2
1 is given by Equation (52) in Proposition 10:

σ2
1 = 4 Var

[
− c(Φ)

(T1(Φ))′[r0]
k1(X1, r0)

]

+ 8
∑

k≥1

Cov

[
− c(Φ)

(T1(Φ))′[r0]
k1(X1, r0),−

c(Φ)

(T1(Φ))′[r0]
k1(Xk+1, r0)

]
, (72)

where k1 is defined in (69). Since

E[k1(X1, r0)] = E[Φ(X1 + r0) − Φ(X1 − r0)] =

∫

R2

1{|y−x|≤r}dΦ(x)dΦ(y) = 1/4
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by (60) and r0 = 1/c(Φ) by (9), we get using (63) that

−2c(Φ) [k1(X1, r0) − E(k1(X1, r0))]

(T1(Φ))′[r0]

= c(Φ)
1/4 + Φ(X1 − 1/c(Φ)) − Φ(X1 + 1/c(Φ))

2
∫

R
φ(y)φ(y + 1/c(Φ))dy

= IF(X1, Q,Φ) , (73)

where IF(·, Q,Φ) is defined in (20). Using (72), (73) and (83) in Lemma 12, we get that

σ2
1 = E[IF(X1, Q,Φ)] + 2

∑

k≥1

E[IF(X1, Q,Φ)IF(Xk+1, Q,Φ)] ,

which concludes the proof of (i). In the case (ii), in view of (71), it is sufficient to show that

− c(Φ)β(D)
nD

L(n)

(T1(Fn) − T1(Φ))[r0]

(T1(Φ))′[r0]

d−→ 1

2
(Z2,D(1) − Z1,D(1)2) . (74)

This result follows from the convergence in distribution of β(D)nD/L(n)(T1(Fn)[r0]−T1(Φ)[r0])

to φ̇(r0/
√

2)(Z2,D(1)−Z1,D(1)2), (63) and the identity −c(Φ) φ̇(r0/
√

2)(2
∫

R
φ(y)φ(y+r0)dy)

−1 =

1/2. This identity follows from φ̇(r0/
√

2) = −(2
√
π)−1 exp(−r20/4)r0 and r0 = 1/c(Φ). �

Proof of Proposition 7. Using the same arguments as those used in the proof of Proposition

3, we get that σ̂2
n,Y −1 satisfies the Hoeffding decomposition (67), where (Yi)i≥1 satisfies (A2)

with γ(0) = 1.

(a) If D > 1/2, using Dehling and Taqqu (1991), the first term in the decomposition (67)

is the leading one, then using the same arguments as those used in the proof of Proposition

3, we get that the asymptotic variance of
√
n (σ̂n,X − σ) is equal to

(2γ(0))−1(γ(0)2 + 2
∑

k≥1

γ(k)2) .

Using the same upper bound as the one used in the proof of Proposition 3, we get that the

relative efficiency of the robust scale estimator is, in this case, larger than 82.27%.

(b) If D < 1/2, we can apply the results of Dehling and Taqqu (1991) and the classical

Delta method to show that

β(D)nDL(n)−1(σ̂n,X − σ)
d−→ σ/2

(
Z2,D(1) − Z2

1,D(1)
)
.

�

Proof of Theorem 8. Let Φσ,+ and Φσ,− denote the c.d.f of (Xi+Xi+h)i≥1 and (Xi−Xi+h)i≥1,

respectively. Since (Xi)i≥1 satisfies Assumption (A2), a straightforward application of a

Taylor formula shows that the same holds for (Xi +Xi+h)i≥1 with a scale equal to Q(Φσ,+)

and L replaced by some slowly varying function L̃. Thus, in the case (i), where D > 1/2, we

obtain that Qn−h ({X1:n−h +Xh+1:n}/Q(Φσ,+),Φ) satisfies the expansion (71) with an =
√
n

as proved in the proof of Theorem 6. Using (53), we get that

√
n {Qn−h (X1:n−h +Xh+1:n,Φ) −Q(Φσ,+)}

= −c(Φ)Q(Φσ,+)

(T1(Φ))′[r0]

2√
n

n∑

i=1

[k1({Xi +Xi+h}/Q(Φσ,+), r0) − U(r0)] + oP (1) ,
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where k1 and U are defined in (69) and (59), respectively. Thus, using (73) and (19), we

obtain

√
n {Qn−h (X1:n−h +Xh+1:n,Φ) −Q(Φσ,+)} =

1√
n

n∑

i=1

IF(Xi +Xi+h, Q,Φσ,+)+oP (1) . (75)

In the case (ii), where D < 1/2, we get from the expansion (71) that

β(D)
(n− h)D

L̃(n− h)
(Qn−h ({X1:n−h +Xh+1:n}/Q(Φσ,+),Φ) − 1)

= −c(Φ)β(D)
(n− h)D

L̃(n− h)

(T1(F+,n−h) − T1(Φ))(r0)

(T1(Φ))′[r0]
+ oP (1) . (76)

where F+,n−h denotes the empirical c.d.f of ({Xi +Xi+h}/Q(Φσ,+))1≤i≤n−h.

Let us now focus on the autocovariances and consider first the case (i) where D > 1/2. Let

us denote by γ−(k) the autocovariance of the process (Xi−Xi+h)i≥1 computed at lag k. Using

a Taylor formula, γ−(k) = O(k−2−D+ǫ), for ǫ in (0, D) such that Li(x)/x
ǫ = O(1), as x tends

to infinity, for all i = 0, 1, 2, 3. Let F−,n−h denote the empirical c.d.f of (Xi −Xi+h)1≤i≤n−h.

Since
∑

k |γ−(k)| < ∞, the process (Xi −Xi+h)i≥1 satisfies Assumption (A1) implying that√
n(F−,n−h − Φσ,−) converges in distribution to a Gaussian process in the space of cadlag

functions equipped with the topology of uniform convergence (Csörgő and Mielniczuk (1996)).

As a consequence, by Lemma 1, the expansion (18) is valid for Qn−h (X1:n−h −Xh+1:n,Φ)

with an =
√
n where IF is defined in (20).

Then, in the case (i), using the Delta method (Theorem 3.1 P. 26 in van der Vaart (1998)),

γ̂Q(h,X1:n,Φ) satisfies the following asymptotic expansion as in (68):

√
n− h

(
γ̂Q(h,X1:n,Φ) −

{
Q2(Φσ,+) −Q2(Φσ,−)

}
/4
)

=
1√
n− h

n−h∑

i=1

ψ(Xi, Xi+h)+oP (1) ,

(77)

where ψ is defined in (31). Hence, we have to establish a CLT for (n−h)−1/2
∑n−h

i=1 ψ(Xi, Xi+h).

Using Lemma 13, the definition of the Hermite rank given on p. 2245 in Arcones (1994) and

Assumption (A2) with D > 1/2, we obtain that Condition (2.40) of Theorem 4 (P. 2256) in

Arcones (1994) is satisfied with τ = 2. This concludes the proof of (i) by observing from (7)

that {Q2(Φσ,+) −Q2(Φσ,−)}/4 = E[X1X1+h] = γ(h).

Consider the case (ii) where D < 1/2. Using (29) and γ(h) = [Q2(Φσ,+) − Q2(Φσ,−)]/4,

one has

γ̂Q(h,X1:n,Φ) − γ(h) = A+
n −A−

n , (78)

where

A±
n =

1

4
[Qn−h (X1:n−h ±Xh+1:n,Φ)2 −Q2(Φσ,±)] .

We first show that the contribution of A−
n is negligeable. Since the expansion (18) holds

for
√
n− h(Qn−h (X1:n−h −Xh+1:n,Φ) − Q(Φσ,−)), we conclude by arguing as in the proof

of Theorem 2, that this expression is OP (1). Applying the Delta method, we get the same
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type of result for Q2
n−h, namely

√
n− h(Qn−h (X1:n−h −Xh+1:n,Φ)2 − Q2(Φσ,−)) = OP (1)

and therefore, since D < 1/2,

β(D)
(n− h)D−1/2

L̃(n− h)

√
n− h A−

n = oP (1) . (79)

We now turn to A+
n . Applying the Delta method with the transformation b(x) = x2 to (76)

and using (74) yields

β(D)
(n− h)D

L̃(n− h)
A+

n = −c(Φ)β(D)

2

(n− h)D

L̃(n− h)
Q2(Φσ,+)

(T1(F+,n−h) − T1(Φ))[r0]

(T1(Φ))′[r0]
+ oP (1)

d−→ Q2(Φσ,+)

4
(Z2,D(1) − Z1,D(1)2) .

The result follows from (78), (79) and Q2(Φσ,+) = Var(X1 +Xh) = 2(γ(0) + γ(h)).

�

Proof of Proposition 9. The classical autocovariance estimator can be obtained from the clas-

sical scale estimator σ̂n,X as in Equation (12). More precisely, a straightforward calculation

leads to

γ̂(h) =
1

4

(
σ̂2

n−h,X1:n−h+Xh+1:n
− σ̂2

n−h,X1:n−h−Xh+1:n

)
(1 + o(1)) +OP

(
1

n2

)
. (80)

In order to alleviate the notations, σ̂n−h,X1:n−h+Xh+1:n
will now be denoted by σ̂+ and σ̂n−h,X1:n−h−Xh+1:n

by σ̂−.

On the one hand, using Proposition 7 and the same arguments as in the beginning of the

proof of Theorem 8, we have

β(D)
nD

L̃(n)
(σ̂+ − σ+)

d−→ σ+

2
(Z2,D(1) − Z1,D(1)2) ,

where σ+ denotes the standard deviation of X1 + X1+h and L̃(n) is defined in Theorem 8.

Note that σ2
+ = 2(γ(0) + γ(h)). By the classical Delta method, we thus obtain

β(D)
nD

L̃(n)

(
σ̂2

+ − σ2
+

) d−→ 2(γ(0) + γ(h))(Z2,D(1) − Z1,D(1)2). (81)

On the other hand, by the same arguments as in Theorem 8, the process (Xi − Xi+h)i≥1

satisfies Assumption (A1). Let σ2
− = 2(γ(0)− γ(h)) denote the variance of X1 −X1+h. Then

as in the proof of Proposition 3,
√
n
(
σ̂2
− − σ2

−

)
converges in distribution. This implies that

β(D)
nD

L̃(n)

(
σ̂2
− − σ2

−

)
= oP (1). (82)

Using (80), (81) and (82), we get:

β(D)
nD

L̃(n)
(γ̂(h) − γ(h))

d−→ γ(0) + γ(h)

2
(Z2,D(1) − Z1,D(1)2) .

�
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7. Technical lemmas

Lemma 12. Let X be a standard Gaussian random variable. The influence function defined

in (20) has the following properties:

E[IF(X,Q,Φ)] = 0 , (83)

E[X IF(X,Q,Φ)] = 0 , (84)

E[X2 IF(X,Q,Φ)] = (2
√
πβ)−1 exp(−1/(4c2)) 6= 0 , (85)

where Φ is the c.d.f of a standard Gaussian random variable, c = c(Φ) is defined in (17) and

β =
∫
φ(y)φ(y + 1/c)dy.

Proof of Lemma 12. Let us first prove that E[IF(X,Q,Φ)] = 0. It is enough to prove that

E[Φ(X + 1/c) − Φ(X − 1/c)] = 1/4. Using the definition of c, namely (66) or (60), we get:

E[Φ(X + 1/c) − Φ(X − 1/c)] =

∫

R

(Φ(x+ 1/c) − Φ(x− 1/c))φ(x)dx

=

∫

R2

1{|y−x|≤1/c}φ(x)φ(y)dxdy = T1(Φ)[1/c] = 1/4 . (86)

Then, let us prove that E[XIF(X,Q,Φ)] = 0. Since X has a standard Gaussian distribution,

it suffices to prove that E[X{Φ(X + 1/c)−Φ(X − 1/c)}] = 0. By symmetry of φ, we obtain:

E[XΦ(X + 1/c)] =

∫

R

xΦ(x+ 1/c)φ(x)dx =

∫

R

x(1 − Φ(−x− 1/c))φ(x)dx

= −
∫

R

xΦ(−x− 1/c)φ(x)dx = E[XΦ(X − 1/c)] .

Finally, let us compute: E[X2IF(X,Q,Φ)]. Set β =
∫
φ(y)φ(y + 1/c)dy. By integrating by

parts, using (86) and finally the symmetry of φ, we get

(β/c)E[X2IF(X,Q,Φ)] = −
∫

R

(∫ y+1/c

y−1/c
x2φ(x)dx

)
φ(y)dy + 1/4

= −
∫

R

{(y − 1/c)φ(y − 1/c) − (y + 1/c)φ(y + 1/c)}φ(y)dy−
∫

R

(∫ y+1/c

y−1/c
φ(x)dx

)
φ(y)dy+1/4

=

∫

R

{−(y − 1/c)φ(y − 1/c) + (y + 1/c)φ(y + 1/c)}φ(y)dy ,

where the last equality comes from
∫

R

(∫ y+1/c
y−1/c φ(x)dx

)
φ(y)dy = T1(Φ)(1/c) = 1/4. By sym-

metry of φ,

∫

R

{−(y − 1/c)φ(y − 1/c) + (y + 1/c)φ(y + 1/c)}φ(y)dy = −2

∫

R

(y−1/c)φ(y−1/c)φ(y)dy

= (2c
√
π)−1 exp(−1/(4c2)) ,

which concludes the proof. �
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Lemma 13. Let (X,Y ) be a standard Gaussian random vector such that Cov(X,Y ) = 0 and

let Φ+ and Φ− denote the c.d.f. of X + Y and X − Y , respectively. The influence function ψ

defined, for all x and y in R, by

ψ(x, y) =
1

2
{Q(Φ+) IF (x+ y,Q,Φ+) −Q(Φ−) IF (x− y,Q,Φ−)} ,

satisfies the following properties:

E[ψ(X,Y )] = 0 , (87)

E[Xψ(X,Y )] = E[Y ψ(X,Y )] = 0 , (88)

E[XY ψ(X,Y )] 6= 0 . (89)

Proof of Lemma 13. Using (19), (83) and Q(Φ±)2 = Var(X ± Y ) (see (8)), we get that

E[ψ(X,Y )] =
1

2
{Q(Φ+)2 −Q(Φ−)2}E [IF(U,Q,Φ)] = 0 ,

where U is a standard Gaussian random variable, which gives (87). Let us now prove (88).

First note that,

E[Xψ(X,Y )] =
1

2
{E[(X + Y )ψ(X,Y )] + E[(X − Y )ψ(X,Y )]} .

But,

E[(X + Y )ψ(X,Y )] =
1

2
E
[
Q(Φ+)2(X + Y )IF((X + Y )/Q(Φ+), Q,Φ)

− Q(Φ−)2(X + Y )IF((X − Y )/Q(Φ−), Q,Φ)
]

=
1

2

[
Q(Φ+)3E[U IF(U,Q,Φ) −Q(Φ−)2Q(Φ+)E[U IF(V,Q,Φ)

]
,

where U = (X + Y )/Q(Φ+) and V = (X − Y )/Q(Φ−) are independent standard Gaussian

random variables. By (84), E[(X+Y )ψ(X,Y )] = 0. In the same way, E[(X−Y )ψ(X,Y )] = 0

which gives (88). Let us now prove (89). Using that 4XY = (X + Y )2 − (X − Y )2, we get

8E[XY ψ(X,Y )] = E[(X +Y )2Q(Φ+)IF(X +Y,Q,Φ+)+ (X −Y )2Q(Φ−)IF(X −Y,Q,Φ−)]

− E[(X − Y )2Q(Φ+)IF(X + Y,Q,Φ+) + (X + Y )2Q(Φ−)IF(X − Y,Q,Φ−)]

= (Q(Φ+)4+Q(Φ−)4)E[U2IF(U,Q,Φ)]−Q(Φ+)2Q(Φ−)2
(
E[V 2IF(U,Q,Φ)] + E[U2IF(V,Q,Φ)]

)
,

(90)

where U and V are as above. The first term is non-zero by (85) while the second term is zero

by independence of U and V and (83). This yields (89).

�

Lemma 14. Let αp,q(r) = E[1{|X−Y |≤r}Hp(X)Hp(Y )] where X and Y are independent stan-

dard Gaussian random variables and Hp is the pth Hermite polynomial with leading coefficient

equal to 1. Then,

(i) α1,0(r) = 0, ∀r ∈ R

(ii) α2,0(r) = −α1,1(r) = φ̇(r/
√

2), ∀r ∈ R

(iii) Moreover, there exists some positive η such as α2,0(r) = −α1,1(r) is different from 0

when r is in [r0 − η; r0 + η], where r0 is defined in (10).
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Proof of Lemma 14. The proof of (i) follows from the symmetry of the Gaussian distribution

and the proof of (ii) relies on the following identity: for all r ∈ R,
∫

R

(φ(x+ r) − φ(x− r))xφ(x)dx = φ̇(r/
√

2).

Let us now turn to the proof of (iii). φ̇(r/
√

2) is equal to zero only if r = 0. By (10), r0 is

such that Φ(r0/
√

2) = 5/8, and hence is different from 0. The existence of η follows from the

continuity of φ̇. �

8. Conclusion

In this paper, we studied the asymptotic properties of the robust scale estimator Qn

(Rousseeuw and Croux (1993)) and of the robust autocovariance estimator γ̂Q (Ma and Genton

(2000)), for short and long-range dependent processes. We showed that the asymptotic vari-

ance of these estimators is optimal, or close to it, and we verified, by using simulations,

that these estimators are indeed robust in the presence of outliers. Complete proofs of the

asymptotic properties of the robust scale Qn and the covariance estimator γ̂Q are provided

for Gaussian stationary processes. The central limit theorems for Qn and γ̂Q were obtained.

In all cases, the rate of convergence of the estimators is
√
n, except for long-range depen-

dent processes with D ∈ (0, 1/2), for which the rate is nDL(n)−1. Empirical Monte-Carlo

experiments were conducted in order to illustrate the finite sample size properties of the es-

timators. The robustness of Qn and γ̂Q were also investigated when the process contained

outliers. The theoretical results and the empirical evidence strongly suggest the use of these

estimators as an alternative to estimate the scale and the autocovariance structure of the

process. The classical scale and autocovariance estimators were also considered as means of

comparison. All estimators showed similar empirical accuracy when the data did not contain

outliers. However, the classical estimators were significantly affected when additive outliers

are present. The robust ones, however, were much less affected.
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Csörgő, S. and J. Mielniczuk (1996). The empirical process of a short-range dependent

stationary sequence under Gaussian subordination. Probab. Theory Related Fields 104 (1),

15–25.

Dehling, H. and M. S. Taqqu (1989). The empirical process of some long-range dependent

sequences with an application to U -statistics. Annals of Statistics 17 (4), 1767–1783.

Dehling, H. and M. S. Taqqu (1991). Bivariate symmetric statistics of long-range dependent

observations. Journal of Statistical Planning and Inference 28, 153–165.

Deutsch, S., J. Richards, and J. Swain (1990). Effects of a single outlier on ARMA identifi-

cation. Communications in Statistics: Theory and Methods 19, 2207–2227.

Doukhan, P., G. Oppenheim, and M. S. Taqqu (Eds.) (2003). Theory and applications of

long-range dependence. Boston, MA: Birkhäuser Boston Inc.
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E-mail address: valderio@cce.ufes.br


	1. Introduction
	2. Theoretical results
	2.1. Short-range dependence setting
	2.2. Long-range dependence setting

	3. Numerical experiments
	3.1. Short-range dependence case
	3.2. Long-range dependence case
	3.3. Non-Gaussian observations

	4. An application
	5. Asymptotic behavior of U-processes
	6. Proofs
	7. Technical lemmas
	8. Conclusion
	References

