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Abstract. The paper concerns robust location and scale estimators under long-range de-

pendence, focusing on the Hodges-Lehmann location estimator, on the Shamos-Bickel scale

estimator and on the Rousseeuw-Croux scale estimator. The large sample properties of these

estimators are reviewed. The paper includes computer simulation in order to examine how

well the estimators perform at finite sample sizes.

1. Introduction

This paper has two parts. The first is a review of the asymptotic theory behind robust
location and scale estimators under long-range dependence. The second part involves com-
puter simulation to see how well the methods perform at finite sample sizes. We focus on
the Hodges-Lehmann location estimator [Hodges and Lehmann (1963)], the Shamos-Bickel
scale estimator [Shamos (1976), Bickel and Lehmann (1979)] and the Rousseeuw-Croux scale
estimator [Rousseeuw and Croux (1993)]. All of these estimators share the following property:
they can be written as empirical quantiles of U -processes defined by

(1) Un(r) =
1

n(n− 1)

∑
1≤i 6=j≤n

1{G(Xi,Xj)≤r} , r ∈ I ,

where I is an interval included in R, G is a symmetric function i.e. G(x, y) = G(y, x) for all
x, y in R, and the process (Xi)i≥1 satisfies:

(A1) (Xi)i≥1 is a stationary mean-zero Gaussian process with covariances ρ(k) = E(X1Xk+1)
satisfying:

ρ(0) = 1 and ρ(k) = k−DL(k), 0 < D < 1 ,

where L is slowly varying at infinity and is positive for large k.

For notational convenience, we shall denote by h(·, ·, r) the kernel on which the U -process Un
is based, that is,

h(x, y, r) = 1{G(x,y)≤r} ,∀x, y ∈ R and r ∈ I .(2)

We are interested in the asymptotic behavior of the quantile U−1
n (p), p ∈ [0, 1], suitably

normalized. The limit may be Gaussian or not. This will depend on the range of D and on
a parameter m called the Hermite rank. Theorem 1 below describes the case D > 1/m and
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m = 2 and Theorem 2 describes the case D < 1/m and m = 1 or 2. The applications we
consider involve only the cases m = 1 and 2.

2. Asymptotic behavior of empirical quantiles

Let us first review some classical tools for the study of the asymptotic behavior of U -
statistics and specifically for U -statistics constructed from Gaussian observations. These are
the Hermite rank of a class of functions and the Hoeffding decomposition given in (8) below.

We start by recalling the definition of the Hermite rank of the class of functions {h(·, ·, r)−
U(r), r ∈ I} which plays a crucial role in understanding the asymptotic behavior of empirical
quantiles of the U -process Un(·). The function {U(r), r ∈ I} is defined below. We shall
expand the kernel function (x, y) 7→ h(x, y, r) in a Hermite polynomial basis. We use Hermite
polynomials with leading coefficients equal to one which are: H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1, H3(x) = x3 − 3x, . . . . We get

(3) h(x, y, r) =
∑
p,q≥0

αp,q(r)
p!q!

Hp(x)Hq(y) , for all x, y in R ,

where

(4) αp,q(r) = E[h(X,Y, r)Hp(X)Hq(Y )] ,

and where (X,Y ) is a standard Gaussian vector that is X and Y are independent standard
Gaussian random variables.

The constant term in the Hermite decomposition is given by α0,0(r): as we shall see below,
it is the non-random limit of Un(r), as n tends to infinity. This is why we set:

U(r) = α0,0(r) =
∫

R2

h(x, y, r)ϕ(x)ϕ(y)dxdy , for all r in I ,(5)

where ϕ denotes the p.d.f of a standard Gaussian random variable.
Consider now the terms with p + q > 0. The Hermite rank of the function h(·, ·, r) is

the smallest positive integer m(r) such that there exist p and q satisfying p + q = m(r) and
αp,q(r) 6= 0. Thus, (3) can be rewritten as

(6) h(x, y, r)− U(r) =
∑
p,q≥0

p+q≥m(r)

αp,q(r)
p!q!

Hp(x)Hq(y) .

The Hermite rank m of the class of functions {h(·, ·, r)−U(r) , r ∈ I} is the smallest index
m = p+ q ≥ 1 such that αp,q(r) 6= 0 for at least one r in I, that is, m = infr∈I m(r).

In the sequel, we shall assume that

m = 1 or 2

since this covers the specific estimators we are interested in.
Having defined the Hermite rank, we now turn to the so-called “Hoeffding’s decomposition”

[Hoeffding (1948)] which is one of the main tools used in the proof of Theorem 1 below. The
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Hoeffding decomposition amounts to decomposing, for all r in I, the difference

(7) Un(r)− U(r) =
1

n(n− 1)

∑
1≤i 6=j≤n

[h(Xi, Xj , r)− U(r)] ,

into two parts, as

(8) Un(r)− U(r) = Wn(r) +Rn(r) ,

where
(9)

Wn(r) =
1
n

n∑
i=1

{h1(Xi, r)− U(r)}+
1
n

n∑
j=1

{h1(Xj , r)− U(r)} =
2
n

n∑
i=1

{h1(Xi, r)− U(r)} ,

and

(10) Rn(r) =
1

n(n− 1)

∑
1≤i 6=j≤n

{h(Xi, Xj , r)− h1(Xi, r)− h1(Xj , r) + U(r)} .

The function h1(x, r) which is added in (9) and subtracted in (10) is defined for all x in R
and r in I as

h1(x, r) =
∫

R
h(x, y, r)ϕ(y)dy .(11)

We shall focus on the empirical quantile U−1(p), p ∈ [0, 1]. Recall that if V : I −→ [0, 1]
is a non-decreasing cadlag function, where I is an interval of R, then its generalized inverse
V −1 is defined by V −1(p) = inf{r ∈ I, V (r) ≥ p}. This applies to both Un(r) and U(r) since
these are non-decreasing functions of r.

Theorem 1, stated below, gives the asymptotic behavior of the empirical quantile U−1
n (·)

in the case where
D > 1/m and m = 2 .

For a proof of Theorem 1, we refer the reader to the proofs of Theorem 1 and Corollary 3 in
Lévy-Leduc et al. (2009).

Theorem 1. Let I be a compact interval of R. Let p be a fixed real number in [0, 1]. Suppose
that there exists some r in I such that U(r) = p, that U is differentiable at r and that U ′(r)
is non null. Assume that the Hermite rank of the class of functions {h(·, ·, r)− U(r) , r ∈ I}
as defined in (6) is m = 2 and that Assumption (A1) is satisfied with D > 1/2. Assume that
h and h1, defined in (2) and (11), satisfy the three following conditions:

(i) There exists a positive constant C such that for all s, t in I, u, v in R,

(12) E[|h(X + u, Y + v, s)− h(X + u, Y + v, t)|] ≤ C|t− s| ,

where (X,Y ) is a standard Gaussian vector.
(ii) There exists a positive constant C such that for all k ≥ 1,

(13) E[|h(X1 + u,X1+k + v, t)− h(X1, X1+k, t)|] ≤ C(|u|+ |v|) ,

(14) E[|h(X1, X1+k, s)− h(X1, X1+k, t)|] ≤ C|t− s| .
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(iii) There exists a positive constant C such that for all t, s in I, and x, u, v in R,

(15) |h1(x+ u, t)− h1(x+ v, t)| ≤ C(|u|+ |v|) ,

and

(16) |h1(x, s)− h1(x, t)| ≤ C|t− s| .

Then, as n tends to infinity,
√
n(U−1

n (p)− U−1(p)) d−→ −W (U−1(p))/U ′(U−1(p)) ,

where {W (r), r ∈ I} is a zero mean Gaussian process with covariance structure given by

(17) E[W (s)W (t)] = 4 Cov(h1(X1, s), h1(X1, t))

+ 4
∑
`≥1

{Cov(h1(X1, s), h1(X`+1, t)) + Cov(h1(X1, t), h1(X`+1, s))} .

To study the case D < 1/m and m = 1 or 2, we do not use the Hoeffding decomposition as
in Theorem 1. We use instead a different decomposition of Un(·) based on the expansion of h
in the basis of Hermite polynomials given by (3). Thus, Un(r) defined in (1) can be rewritten
as follows

(18) n(n− 1){Un(r)− U(r)} = W̃n(r) + R̃n(r) ,

where

(19) W̃n(r) =
∑

1≤i 6=j≤n

∑
p,q≥0
p+q≤m

αp,q(r)
p!q!

Hp(Xi)Hq(Xj)

and

(20) R̃n(r) =
∑

1≤i 6=j≤n

∑
p,q≥0
p+q>m

αp,q(r)
p!q!

Hp(Xi)Hq(Xj) .

Introduce also the Beta function

(21) B(α, β) =
∫ ∞

0
yα−1(1 + y)−α−βdy =

Γ(α)Γ(β)
Γ(α+ β)

, α > 0, β > 0 .

The limit processes which appear in the next theorem are the standard fractional Brownian
motion (fBm) (Z1,D(t))0≤t≤1 and the Rosenblatt process (Z2,D(t))0≤t≤1. They are defined
through multiple Wiener-Itô integrals and given by

(22) Z1,D(t) =
∫

R

[∫ t

0
(u− x)−(D+1)/2

+ du
]

dB(x), 0 < D < 1 ,

and

(23) Z2,D(t) =
∫ ′

R2

[∫ t

0
(u− x)−(D+1)/2

+ (u− y)−(D+1)/2
+ du

]
dB(x)dB(y), 0 < D < 1/2 ,

where B is the standard Brownian motion, see Fox and Taqqu (1987). The symbol
∫ ′ means

that the domain of integration excludes the diagonal. The following theorem treats the case

D < 1/m where m = 1 or 2 .
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Theorem 2. Let I be a compact interval of R. Let p be a fixed real number in [0, 1]. Suppose
that there exists some r in I such that U(r) = p, that U is differentiable at r and that U ′(r)
is non null. Assume that Assumption (A1) holds with D < 1/m, where m = 1 or 2 is the
Hermite rank of the class of functions {h(·, ·, r) − U(r) , r ∈ I} as defined in (6). Assume
also the following:

(i) There exists a positive constant C such that, for all k ≥ 1 and for all s, t in I,

(24) E[|h(X1, X1+k, s)− h(X1, X1+k, t)|] ≤ C|t− s| .

(ii) U is a Lipschitz function.
(iii) The function Λ̃ defined, for all s in I, by

(25) Λ̃(s) = E[h(X,Y, s)(|X|+ |XY |+ |X2 − 1|)] ,

where X and Y are independent standard Gaussian random variables, is also a Lipschitz
function.

Then, as n tends to infinity,

nmD/2

L(n)m/2
(U−1

n (p)− U−1(p))

converges in distribution to

−2k(D)−1/2α1,0(U−1(p))
U ′(U−1(p))

Z1,D(1) , if m = 1 ,

and to

−k(D)−1
{
α1,1(U−1(p))Z1,D(1)2 + α2,0(U−1(p))Z2,D(1)

}
/U ′(U−1(p)) , if m = 2 ,

where the fractional Brownian motion Z1,D(·) and the Rosenblatt process Z2,D(·) are defined
in (22) and (23) respectively,

(26) k(D) = B((1−D)/2, D) ,

where B is the Beta function defined in (21), and αp,q(·) is defined in (4).

For a proof of Theorem 2, we refer the reader to the proofs of Theorem 2 and Corollary 4
in Lévy-Leduc et al. (2009).

3. Applications

We use the results established in Section 2 to study the asymptotic properties of several
robust estimators based on empirical quantiles of U -processes in the long-range dependence
setting.
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3.1. Hodges-Lehmann robust location estimator. To estimate the location parameter
θ of a long-range dependent Gaussian process (Yi)i≥1 satisfying Yi = θ + Xi where (Xi)i≥1

satisfy Assumption (A1), Hodges and Lehmann (1963) suggest using

(27) θ̂HL = median
{
Yi + Yj

2
; 1 ≤ i < j ≤ n

}
= θ + median

{
Xi +Xj

2
; 1 ≤ i < j ≤ n

}
.

Thus, θ̂HL may be expressed as

θ̂HL = θ + U−1
n (1/2) ,

where Un(·) is defined by (1) with G(x, y) = (x+ y)/2 and satisfies the following proposition.

Proposition 3. Under Assumption (A1), the Hodges-Lehmann location estimator θ̂HL de-
fined in (27) from Y1, . . . , Yn satisfies

(28) nD/2L(n)−1/2(θ̂HL − θ)
d−→ k(D)−1/2Z1,D(1) ,

where k(D)−1/2Z1,D(1) is a zero-mean Gaussian random variable with variance 2(−D +
1)−1(−D + 2)−1.

Moreover, it converges to θ at the same rate as the sample mean Ȳn = n−1
∑n

i=1 Yi with
the same limiting distribution. There is no loss of efficiency.

The proof of Proposition 3 is a consequence of Theorem 2. For further details, we refer the
reader to Section 4.1 of Lévy-Leduc et al. (2009).

3.2. Shamos-Bickel robust scale estimator. To estimate the scale parameter σ of a long-
range dependent Gaussian process (Yi)i≥1 satisfying Yi = σXi where (Xi)i≥1 satisfy Assump-
tion (A1), Shamos (1976) and Bickel and Lehmann (1979) propose to use

(29) σ̂SB = b median{|Yi − Yj |; 1 ≤ i < j ≤ n} = b σ median{|Xi −Xj |; 1 ≤ i < j ≤ n} ,

where b = 1/(
√

2Φ−1(3/4)) = 1.0483 to achieve consistency for σ in the case of Gaussian
distributions.

Thus, σ̂SB may be expressed as

σ̂SB = bσU−1
n (1/2) ,

where Un(·) is defined by (1) with G(x, y) = |x− y| and satisfies the following proposition.

Proposition 4. Under Assumption (A1), the Shamos-Bickel robust scale estimator σ̂SB de-
fined in (29) from Y1, . . . , Yn has the following asymptotic behavior:

(i) If 1/2 < D < 1,

(30)
√
n(σ̂SB − σ) d−→ N (0, σ̄2)

where

σ̄2 =
2b2σ2

ϕ2(1/(b
√

2))

Var(h1(Y1/σ, 1/b)) + 2
∑
k≥1

Cov(h1(Y1/σ, 1/b), h1(Yk+1/σ, 1/b))


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and h1 is given by

h1(x, r) =
∫

R
1{|x−y|≤r}ϕ(y)dy = Φ(x+ r)− Φ(x− r) ,

Φ being the c.d.f of a standard Gaussian random variable.
(ii) If 0 < D < 1/2,

(31) k(D)nDL(n)−1(σ̂SB − σ) d−→ σ

2
(Z2,D(1)− Z1,D(1)2) ,

where k(D) is defined in (26) and the processes Z1,D(·) and Z2,D(·) are defined in (22)
and (23).

The proof of Proposition 4 is a consequence of Theorem 1 in the case (i) and of Theorem
2 in the case (ii). For further details, we refer the reader to Section 4.4 of Lévy-Leduc et al.
(2009).

Let us now compare the asymptotic behavior of σ̂SB with that of the square root of the
sample variance estimator defined by

(32) σ̂n,Y =

(
1

n− 1

n∑
i=1

(Yi − Ȳ )2

)1/2

.

Corollary 5. Under the assumptions of Proposition 4, σ̂SB defined in (29) has the following
properties. In the case (i), its asymptotic relative efficiency with respect to the classical scale
estimator σ̂n,Y defined in (32) is larger than 86.31% and in the case (ii), there is no loss of
efficiency.

Corollary 5 is proved in Section 5.
As claimed in (Rousseeuw and Croux, 1993, p. 1277), however, one of the main drawbacks

of the Shamos-Bickel estimator is its very low finite sample breakdown point (around 29%).
We recall that the finite sample breakdown point of an estimator θ̂n obtained from any
observations x = {x1, . . . , xn} is defined, see Rousseeuw and Croux (1993), by

ε?n(θ̂n,x) = min{ε+
n (θ̂n,x), ε−n (θ̂n,x)}

where

ε+
n (θ̂n,x) = min{m/n : sup

x′
θ̂n(x′) =∞}, ε−n (θ̂n,x) = min{m/n : inf

x′
θ̂n(x′) = 0}

and x′ is obtained by replacing any m observations of x by arbitrary values. Intuitively,
following (Maronna et al., 2006, p. 61), the finite sample breakdown point of θ̂n at x is
the largest proportion of data points that can be arbitrarily replaced by outliers without θ̂n
diverging to 0 or infinity. Large breakdown points are desirable. In the context of estimation
of the mean, for example, the sample mean has a breakdown point of 0 and the median has
a breakdown point of 50% which is the highest breakdown point that one can expect.

In order to increase the value of the finite sample breakdown point, Rousseeuw and Croux
(1993) propose another robust scale estimator which is presented and studied in the next
section. Their estimator has the advantage of having a breakdown point of 50% (Rousseeuw
and Croux, 1993, Theorem 5) which is the highest breakdown point that one can expect.
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3.3. Rousseeuw-Croux robust scale estimator. To estimate the scale parameter σ in
the framework described in Section 3.2, Rousseeuw and Croux (1993) suggest using

(33) σ̂RC = c {|Yi − Yj |; 1 ≤ i < j ≤ n}(kn) = c σ {|Xi −Xj |; 1 ≤ i < j ≤ n}(kn) ,

where kn = bn(n − 1)/4c, c = 1/(
√

2Φ−1(5/8)) = 2.21914. That is, up to the multiplicative
constant c, σ̂RC is the knth order statistic of the n(n− 1) distances |Xi−Xj | between all the
pairs of observations such that i < j.

Proposition 6. Under Assumption (A1), the Rousseeuw-Croux robust scale estimator σ̂RC
defined in (33) from Y1, . . . , Yn has the following asymptotic behavior.

(i) If D > 1/2,
√
n(σ̂RC − σ) d−→ N (0, σ̃2) ,

where
σ̃2 = σ2E[IF(Y1/σ)2] + 2σ2

∑
k≥1

E[IF(Y1/σ)IF(Yk+1/σ)] ,

with

IF(x) = c

(
1/4− Φ(x+ 1/c) + Φ(x− 1/c)∫

R ϕ(y)ϕ(y + 1/c)dy

)
,

Φ and ϕ denoting the c.d.f and the p.d.f of the standard Gaussian random variable
respectively.

(ii) If D < 1/2,

k(D)nDL(n)−1(σ̂RC − σ) d−→ σ

2
(Z2,D(1)− Z2

1,D(1)) ,

where k(D) is defined in (26) and the processes Z1,D(·) and Z2,D(·) are defined in (22)
and (23).

The proof of Proposition 4 is a consequence of Theorem 1 in the case (i) and of Theorem
2 in the case (ii). For further details, we refer the reader to Theorem 6 of Lévy-Leduc et al.
(2010). The following corollary is proved in Section 5.

Corollary 7. Under the assumptions of Proposition 6, σ̂RC defined in (33) has the following
properties. In the case (i), its asymptotic relative efficiency with respect to the classical scale
estimator σ̂n,Y defined in (32) is larger than 82.27% and in the case (ii), there is no loss of
efficiency.

4. Numerical experiments

In this section, we investigate the robustness properties of the previous estimators using
Monte Carlo experiments. We shall regard the observations Xt, t = 1, . . . , n, as a stationary
series Yt, t = 1, . . . , n, corrupted by additive outliers of magnitude ω. Thus we set

Xt = Yt + ωWt,(34)

where Wt are i.i.d. random variables. In Section 4.1, Wt are Bernoulli(p/2) random variables.
In Section 4.2, Wt are such that P (Wt = −1) = P (Wt = 1) = p/2 and P (Wt = 0) = 1 − p,
hence E[Wt] = 0 and E[W 2

t ] = Var(Wt) = p. Observe that, in this case, W is the product
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of Bernoulli(p) and Rademacher independent random variables; the latter equals 1 or −1,
both with probability 1/2. (Yt)t is a stationary time series and it is assumed that Yt and
Wt are independent random variables. The empirical study is based on 5000 independent
replications with n = 600, p = 10% and ω = 10. We consider the cases where Yt are Gaussian
ARFIMA(0, d, 0) processes, that is,

(35) Yt = (I −B)−dZt =
∑
j≥0

Γ(j + d)
Γ(j + 1)Γ(d)

Zt−j

where B denotes the backward operator and d= 0.2, 0.45, corresponding respectively to
D = 0.6, 0.1, where D is defined in (A1) and {Zt} are i.i.d N (0, 1).

4.1. Hodges-Lehmann robust location estimator. In Figure 1 the empirical density
functions of nD/2L(n)−1/2θ̂HL and nD/2L(n)−1/2X̄n are displayed when Xt has no outliers
with d = 0.2 (left) and d = 0.45 (right). Following (Doukhan et al., 2003, p. 21), we take
L(n) = Γ(1−2d)/(Γ(d)Γ(1−d)). In these cases both shapes are similar to the limit indicated
in Proposition 3, that is, a Gaussian density with mean zero and variance 3.5714 when d = 0.2
and 1.1696 when d = 0.45. The empirical variance of the Hodges-Lehmann estimator and of
the sample mean are equal to 3.6397 and 3.6249, when d = 0.2 and to 1.2543, 1.2538 when
d = 0.45. These results are thus a good illustration of Proposition 3.
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Figure 1. Empirical densities of the quantities nD/2L(n)−1/2θ̂HL (’*’) and

nD/2L(n)−1/2X̄n (’o’) for the ARFIMA(0, d, 0) model with d = 0.2 (left), d = 0.45 (right),

n = 600 without outliers and the p.d.f of a zero mean Gaussian random variable with a

variance 2(−D + 1)−1(−D + 2)−1 (dotted line).

Figure 2 displays the same quantities as in Figure 1 when Xt has outliers with d = 0.2 (left)
and d = 0.45 (right). As expected, the sample mean is much more sensitive to the presence of
outliers than the Hodges-Lehmann estimator. Observe that when the long-range dependence
is strong (large d), the effect of outliers is less pronounced.

4.2. Shamos-Bickel robust scale estimator. In Figure 3, the empirical densities of
√
n(σ̂SB−

σ) and
√
n(σ̂n,X − σ) are displayed when d = 0.2 without outliers (left) and with outliers

(right). In the left part of this figure, we illustrate the results of part (i) of Corollary 5 since
both shapes are similar to that of Gaussian density with mean zero. A lower bound for the
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Figure 2. Empirical densities of the quantities nD/2L(n)−1/2θ̂HL (’*’) and

nD/2L(n)−1/2X̄n (’o’) for the ARFIMA(0, d, 0) model with d = 0.2 (left), d = 0.45 (right),

n = 600 with outliers (p = 10% and ω = 10).

theoretical asymptotic relative efficiency stated in Corollary 5 is 86.31%. The empirical vari-
ances are equal to 0.7968 and 0.7135, respectively, corresponding to an asymptotic relative
efficiency of 89.54%. On the right part of Figure 3, we can see that the classical scale estimator
is much more sensitive to the presence of outliers than the Shamos-Bickel estimator.
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Figure 3. Empirical densities of the quantities
√
n(σ̂SB−σ) (’*’) and

√
n(σ̂n,X −σ) (’o’)

for the ARFIMA(0, d, 0) model with d = 0.2, n = 600 without outliers (left) and with outliers

p = 10% and ω = 10 (right).

Figure 4 (left) illustrates the part (ii) of Corollary 5. d = 0.45 corresponds to D =
0.1 < 1/2. The right part of Figure 4 shows the robustness of the Shamos-Bickel estimator
with respect to the classical scale estimator in the presence of outliers. In these numerical
experiments, following (Doukhan et al., 2003, p. 21), we take L(n) = Γ(1−2d)/(Γ(d)Γ(1−d)).

4.3. Rousseeuw-Croux robust scale estimator. For numerical results associated to the
Rousseeuw-Croux robust scale estimator (33), we refer the reader to Lévy-Leduc et al. (2010).

4.4. Discussion on the construction of asymptotic confidence intervals. We propose
in this section to give some hints on how to build confidence intervals for the different es-
timators that we considered. There are mainly two situations: the limiting distribution is
either Gaussian or a linear combination of the square of a Gaussian random variable and the
Rosenblatt process evaluated at 1. For instance in the case of the Shamos-Bickel estimator
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Figure 4. Empirical densities of the quantities nDL(n)−1(σ̂SB − σ) (’*’) and

nDL(n)−1(σ̂n,X − σ) (’o’) for the ARFIMA(0, d, 0) model with d = 0.45, n = 600 with-

out outliers (left) and with outliers p = 10% and ω = 10 (right).

when D is in (1/2, 1), we give in Table 1 an empirical evaluation of σ̄2/σ2 for different values
of D = 1− 2d of an ARFIMA(0,d,0) process, where σ̄2 is defined in (30). These values have
been obtained by using quasi-Monte Carlo approaches. An asymptotic confidence interval for
σ can then be obtained by plug-in.

d 0.1 0.12 0.15 0.17 0.2

σ̄2/σ2 0.6050 0.6232 0.6670 0.7121 0.8202

Table 1. Empirical values of σ̄2/σ2 for an ARFIMA(0, d, 0) process with different values of d.

The case where D = 1 − 2d belongs to (0, 1/2) is more involved. It requires an estimator
of D as well as an estimation of L(n). In Table 2, we give for different values of d the 95%
empirical quantiles associated to (Z2,D(1)−Z1,D(1)2)/2, namely the x’s satisfying P(Z2,D(1)−
Z1,D(1)2) ≤ 2x) = 0.95. These values have been obtained by using that from Lemma 14 in
Lévy-Leduc et al. (2009)
(36)

k(D)nD−2L(n)−1

n/2 n∑
i=1

(X2
i − 1)− 1/2

∑
1≤i,j≤n

XiXj

 d→ 1/2
[
Z2,D(1)− (Z1,D(1))2

]
,

as n tends to infinity. More precisely, we simulated for n = 1000, 5000 replications of the l.h.s
of (36) when X is an ARFIMA(0,d,0) process.

d 0.26 0.3 0.35 0.4 0.45

x 45.2103 29.5672 19.2967 15.0844 15.5393

Table 2. Values of x defined by P(Z2,D(1) − Z1,D(1)2) ≤ 2x) = 0.95 for an

ARFIMA(0, d, 0) process with different values of d.
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5. Proofs

Proof of Corollary 5. Consider σ̂n,Y defined in (32).
Case (i). Let us first prove that, as n tends to infinity,

(37)
√
n(σ̂2

n,Y − σ2) d−→ N (0, 2σ4[1 + 2
∑
k≥1

ρ(k)2]) .

Using (32) and Xi = Yi/σ, n(n− 1)(σ̂2
n,Y − σ2) = σ2[n

∑n
i=1(X2

i − 1)−
∑

1≤i,j≤nXiXj + n].
Since H2(Xi) = X2

i − 1, we get

(38)
√
n(σ̂2

n,Y − σ2) = σ2

 √n
n− 1

n∑
i=1

H2(Xi)−
√
n

n(n− 1)

∑
1≤i,j≤n

XiXj +
√
n

n− 1

 .

By Theorem 4 in Arcones (1994),

n−1/2
n∑
i=1

H2(Xi)
d−→ N (0, 2[1 + 2

∑
k≥1

ρ(k)2]) .

Using the same arguments as those used in the proof of (80) in Lemma 15 of Lévy-Leduc et al.
(2009),

√
n(n−1)−1

∑n
i=1H2(Xi) is the leading term in (38), which gives (37). Using the Delta

method to go from σ̂2
n,Y to σ̂n,Y , setting f(x) =

√
x so that f ′(σ2) = 1/(2

√
σ2) = 1/(2σ), we

get
√
n(σ̂n,Y − σ) d−→ N (0,

σ2

2
[1 + 2

∑
k≥1

ρ(k)2]) .

On the other hand, by Proposition 4 (case (i)),
√
n(σ̂SB − σ) d−→ N (0, σ̄2) ,

where

σ̄2 =
2b2σ2

ϕ2(1/(b
√

2))

Var(h1(Y1/σ, 1/b)) + 2
∑
k≥1

Cov(h1(Y1/σ, 1/b), h1(Yk+1/σ, 1/b))

 .

Thus, the asymptotic relative efficiency (ARE) of σ̂SB with respect to σ̂n,Y satisfies

ARE =
σ2/2[1 + 2

∑
k≥1 ρ(k)2]

σ̄2
.

Using Lemma 1 in Arcones (1994) and the fact that h1 is of Hermite rank greater than 2, we
get that for any k ≥ 1, Cov(h1(Y1/σ, 1/b), h1(Yk+1/σ, 1/b)) ≤ ρ(k)2 Var(h1(Y1/σ, 1/b)), which
gives

σ̄2 ≤ 2b2σ2

ϕ2(1/(b
√

2))
Var(h1(Y1/σ, 1/b))[1 + 2

∑
k≥1

ρ(k)2] ,

and hence

ARE ≥ ϕ2(1/(b
√

2))
4b2 Var(h1(X1, 1/b))

≈ 86.31% .

The value of 86.31% has been obtained by approximating Var(h1(X1, 1/b)) with some Monte-
Carlo simulations.
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Case (ii). When 0 < D < 1/2, (38) and Lemma 14 in Lévy-Leduc et al. (2009) lead to

(39) k(D)nDL(n)−1(σ̂2
n,Y − σ2) d−→ σ2(Z2,D(1)− Z2

1,D(1)) .

The result follows by applying the Delta method.
�

Proof of Corollary 7. The proof of (i) is given in the proof of Proposition 3 in Lévy-Leduc
et al. (2010). The proof of (ii) comes from (39) and the statement (ii) in Proposition 6. �
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- Bât. F, aile J.J. Laffont - 21 allée de Brienne - 31000 Toulouse

E-mail address: helene@boistard.fr

CNRS/LTCI/TelecomParisTech - 46, rue Barrault, 75634 Paris Cédex 13, France.
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