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Wasserstein normality test [del Barrio et al.,1999, 2000]

Wasserstein distance

P2(R) = {probability measures on R with finite second moment}
For P1, P2 ∈ P2(R), the L2-distance of Wasserstein between P1 and P2 is

W(P1, P2) = inf{[E(X1 −X2)
2]1/2 : L(X1) = P1,L(X2) = P2}.

Another expression with the quantile function :

W(P1, P2) =

(∫ 1

0
(F−1

1 (t)− F−1
2 (t))2dt

)1/2

,

with F−1
1 and F−1

2 the quantile functions associated to P1 and P2.



Distance to a location-scale family, given by the family of distribution func-
tions (d.f.)

HF = {H : H(x) = F (
x− µ

σ
), with µ ∈ R, σ > 0},

where the d.f. F is associated to a (0,1) variable:
for P ∈ P2(R) with d.f. F0, mean µ0 and standard deviation σ0, the L2-
Wasserstein distance of P to HF is given by

W2(P,HF) : = inf{W2(P, H) : H ∈ HF}

= σ2
0 −

(∫ 1

0
F−1

0 (t)F−1(t)dt

)2

.

A measure of the distance to the family HF : the ratio W2(P,HF)
σ2

0

.

Test statistics, normality test
Let X1, . . . , Xn be an i.i.d. sample with underlying d.f. F0, empirical d.f. Fn

and sample variance S2
n.

Statistics to test the fit of the sample to the family HF :

Rn :=
W2(Fn,HF)

S2
n

= 1−

(∫ 1
0 F−1

n (t)F−1(t)dt
)2

S2
n



Theorem: asymptotic distribution of Rn. Let X1, . . . , Xn be an i.i.d. sequence
of r.v. with empirical d.f. Fn, underlying d.f. F0 ∈ HF and let
a = sup{x : F (x) = 0}, b = inf{x : F (x) = 1}. We assume that F is twice
differentiable on (a, b) with F ′(x) = f(x) > 0 on (a, b), and that for some
γ > 0

sup
0<t<1

t(1− t)|f ′(F−1(t))|/f2(F−1(t)) ≤ γ. (∗)
Moreover, we suppose that

∫ 1

0

t(1− t)

(f(F−1(t)))2
dt < ∞

and that the following conditions on the behaviour of the extremes hold:

n

∫ 1

n

0
(F−1

n (t)− F−1
0 (t))2dt →P 0 and n

∫ 1

n−1

n

(F−1
n (t)− F−1

0 (t))2dt →P 0.

Then Rn converges in distribution to
∫ 1

0

(
B(t)

f(F−1(t))

)2

dt−
(∫ 1

0

B(t)

f(F−1(t))
dt

)2

−
(∫ 1

0

B(t)F−1(t)

f(F−1(t))
dt

)2

.



Theorem for the normal case: let {Xn}∞n=1 be an i.i.d. sequence of normal
r.v. (Φ, φ d.f. and density function). Then

n(Rn − an)→d

∫ 1

0

B2(t)− EB2(t)

(φ(Φ−1(t)))2
dt−

(∫ 1

0

B(t)

φ(Φ−1(t))
dt

)
2 −

(∫ 1

0

B(t)Φ−1(t)

φ(Φ−1(t))
dt

)
2

with an = 1
n

∫ n−1

n
1

n

t(1−t)
(φ(Φ−1(t)))2dt, and B a Brownian bridge.

This holds because the following properties are satisfied by the normal law:
∫ 1

0

∫ 1

0

(
s ∧ t− st

φ(Φ−1(s))φ(Φ−1(t))

)2

dsdt < +∞ and

lim
n→+∞

1√
n

∫ n−1

n

1

n

√
t(1− t)

(φ(Φ−1(t)))2
dt = 0.



A principal component decomposition of the process B(t)
φ(φ−1(t))

with covariance
function

K(s, t) =
s ∧ t− st

φ(Φ−1(s))φ(Φ−1(t))

leads to:
Theorem: let {Xn}∞n=1 be an i.i.d. sequence of normal r.v.. Then

n(Rn − an) →d −3

2
+

+∞∑

j=3

Z2
j − 1

j
,

where {Zj}+∞j=3 is a sequence of independent N(0,1) normal r.v. and

an = 1
n

∫ n−1

n
1

n

t(1−t)
(φ(Φ−1(t)))2dt. With this expression can be calculated the limit dis-

tribution of n(Rn − an) via its characteristic function. [de Wet and Venter,
1972].



Remark: The asymptotic distribution of Rn is proved for X1, . . . , Xn ∼ N(0,1),
owing to the following decomposition:

Rn =
1

S2
n

(‖F−1
n −Φ−1‖22− < F−1

n −Φ−1,1 >2 − < F−1
n −Φ−1,Φ−1 >2

)
,

where < . , . > denotes the inner product in L2([0,1]).

Let us denote by Hj(x) the j-th polynomial of Hermite (of degree j).
H0(x) = 1, H1(x) = x. These polynomials form a basis of L2(R) for the inner
product < f, g >= 1√

2π

∫
R f(x)g(x)e−

x2

2 dx.

The functions Hj ◦Φ−1 are then a basis of L2([0,1]), which yields:

Rn =
1

S2
n

+∞∑

j=2

< F−1
n −Φ−1, Hj ◦Φ−1 >2 .



Power study under contiguous alternatives

Examples of contiguous mixtures

Let X1, . . . , Xn be an i.i.d sample with underlying d.f.

Φn(x) = γN(µ, σ2) + (1− γ)N(µ + σa, σ2),

in two situations:

• γ = 1− δ√
n
, a ∈ R, δ ∈ R+

• γ ∈ [0,1], a = α√
n
, α ∈ R.

The purpose: the asymptotic distribution of Rn under these alternatives.

Remark: the contiguity hypothesis here is stated in terms of Wasserstein’s
distance and not of Hellinger’s distance like in the classical contiguity require-
ment on the probability density function φn:

∫ (√
n(φ1/2

n − φ1/2)− 1

2
gφ1/2

)2

→ 0.



General hypothesis for a theoretical study of the power
Hypothesis (H): X1, . . . , Xn an i.i.d. sample with underlying d.f. Φn such that
there exists a d.f. Φ̃n, and µ ∈ R, σ > 0, with Φn(x) = Φ̃n(

x−µ
σ

)∀x ∈ R and Φ̃n

satisfying (H̃): there exists a function h in L2([0,1]) such that
∫ 1

0

(√
n(Φ̃−1

n (t)− F−1(t))− h(t)
)2

dt → 0, n →∞

and hn(t) :=
√

n(Φ̃−1
n (t)−F−1(t)) is dominated by a function in L4([0,1]). We

also suppose that if Yi = Xi−µ
σ
, the sample variance associated to {Yi} tends

to 1 in probability.

Theorem: suppose we are testing fit to the location-scale family HF , with F
satisfaying the condition:

∫ 1

0

t(1− t)

(f(F−1(t)))2
dt < ∞

and the set of conditions (*). Let X1, . . . , Xn be an i.i.d. sample satisfaying
hypothesis (H) for a continuous function h on [0,1], then nRn converges in
distribution to
∫ 1

0

(
h(t) +

B(t)

f(F−1(t))

)2

dt−
(∫ 1

0
(h(t) +

B(t)

f(F−1(t))
)dt

)2

−
(∫ 1

0
(h(t) +

B(t)

f(F−1(t))
)F−1(t)dt

)2



Theorem in the normal case with a stronger hypothesis (H): we impose

log logn

∫ 1

0

(√
n(Φ̃−1

n (t)−Φ−1(t))− h(t)
)2

dt → 0, n →∞.

Under the hypothesis (H), there exist a probability space, r.v. Vi with uniform
law on [0,1] and empirical d.f. Gn and a sequence of Brownian bridges Bn on
this space, such that the Wasserstein statistics Rn = W2(Fn,HΦ)

S2
n

satisfies:

n(Rn − an) =

∫ 1

0
h2(t)dt +

∫ n−1

n

1

n

B2
n(t)− EB2

n(t)

(φ(Φ−1(t)))2
dt + 2

∫ n−1

n

1

n

Bn(t)h(G−1
n (t))

φ(Φ−1(t))
dt

−
(∫ 1

0
h(t)dt +

∫ n−1

n

1

n

Bn(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0
h(t)Φ−1(t)dt +

∫ n−1

n

1

n

Bn(t)

φ(Φ−1(t))
Φ−1(t)dt

)2

+ oP(1).



Supplementary hypothesis:

if there exists λ > 0 such that nλ
∫ n−1

n
1

n

(
h(G−1

n (t))− h(t)
)2

dt = OP(1), then

∫ n−1

n

1

n

Bn(t)h(G−1
n (t))

φ(Φ−1(t))
dt =

∫ n−1

n

1

n

Bn(t)h(t)

φ(Φ−1(t))
dt + oP(1),

and the following decomposition is true:

Theorem: n(Rn − an) →d
∑+∞

j=3

(
Z̃2

j − EZ̃2
j

) − EZ̃2
1 − EZ̃2

2 +
∫ 1
0 h2(t)dt, where

Z̃j is an sequence of normal r.v. with mean EZ̃j =
∫ 1
0 h(t)Hj(Φ−1(t))dt and

covariance EZ̃iZ̃j = 1
j
δij, for i, j ≥ 1.



The example of mixtures

For the first example of mixture: Φn(x) = (1− δ√
n
)Φ(x) + δ√

n
Φ(x− a), and

h(t) = δ
t−Φ(Φ−1(t)− a)

φ(Φ−1(t))
.

For the second example: Φn(x) = γΦ(x) + (1− γ)Φ(x− α√
n
) and

h(t) = α(1− γ),

which permits to write the expansion of the asymptotic distribution of Rn.



Power study with a weight

The next step of the study will be finding a specifically designed weight for
contiguous mixtures. A weight w will be a positive measurable function on
(0,1). The L2(w)-Wasserstein distance is

Ww(F, G) =

(∫ 1

0
(F−1(t)−G−1(t))2w(t)dt

)1/2

and the test statistics Rn is replaced by

Rw
n =

W2
w(Fn,H)

σ2
w(Fn)

where µw(F ) =
∫ 1
0 F−1(t)w(t)dt and σ2

w(F ) =
∫ 1
0 (F−1(t))2w(t)dt− (µw(F ))2.

See [del Barrio, Giné and Utzet, 2003, preprint] for the asymptotic null dis-
tribution for some location-scale families.

We hope it can be proved under good conditions that

n‖F−1
n − F−1‖22,w → ‖ B

f ◦ F−1
+ h‖22,w

and thus, look for a weight w which maximizes the norm ‖h‖22,w.


