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Wasserstein normality test [del Barrio et al.,1999, 2000]

Wasserstein distance

P>(R) = {probability measures on R with finite second moment}

For P1, P> € P>(R), the Ly-distance of Wasserstein between P, and P is
W(Py, P») = inf{[E(X1 — X2)?]*?: £(X1) = P1, L(X>) = P»}.

Another expression with the quantile function :

1 1/2
W(Py, Py) = ( / (Fri(t) — F2—1<t>>2dt) ,
0

with F;t and F; ' the quantile functions associated to P1 and P.



Distance to a location-scale family, given by the family of distribution func-
tions (d.f.)

Hp = {H: H() = F(Z—"), with u € R,0 > 0},
o

where the d.f. F' is associated to a (0,1) variable:
for P € P>(R) with d.f. Fp, mean po and standard deviation og, the Lo-
Wasserstein distance of P to Hpg is given by

W2(P,Hr) : = inf{W?(P,H): H € Hp}
1 2
= 05— (/ Fgl(t)F—l(t)dt)
0
A measure of the distance to the family Hp: the ratio YW(2He)

0

Test statistics, normality test

Let Xi1,...,X, be an i.i.d. sample with underlying d.f. Fp, empirical d.f. Fj,
and sample variance S2.

Statistics to test the fit of the sample to the family Hg:

W2(F,, Hr) (/s 1“1:1(15>F—1(t)olt)2
— ny /LF —1

S2 32

n

R, :



Theorem: asymptotic distribution of R,,. Let X4,...,X, be ani.i.d. sequence
of r.v. with empirical d.f. F,, underlying d.f. Fp € Hr and let

a = sup{x : F(x) =0}, b = inf{z : F(x) = 1}. We assume that F is twice
differentiable on (a,b) with F'(z) = f(xz) > 0 on (a,b), and that for some
v>0

sup t(1 —OIf' (FHE)I/fAFETH#) <v. ()

o<kl
Moreover, we suppose that

L1 —¢)
/o GE )" <>

and that the following conditions on the behaviour of the extremes hold:

n/;(Fn_l(t) — Fy1(t))2dt —¥ 0 and n/l(Fn_l(t) — Fy(t)%dt —* 0.
0 o

Then R, converges in distribution to

L/ B(@) )2 _( 1L B(@) )2_( L B F-1(t) )2
/o(f(F_l(t)) =\ 7" o FEID) Y




Theorem for the normal case: let {X,}52, be an i.i.d. sequence of normal
r.v. (d,¢ d.f. and density function). Then

oy 'B2(t) — EB2(t) _( ' B@) )2_( LB(t)®d1(t) )2
(R = n) /o O /oqb(cbl(t))dt /()¢(¢1(t)) a

with a, = %f;_ (gb(ﬁ)ljé))))zdt, and B a Brownian bridge.

This holds because the following properties are satisfied by the normal law:
1,1 2
SAt— st
dsdt < +o00 and
/o /o (¢(¢—1(s))¢(¢—1(t))>

_ t(l—t)
nﬂToof/ CCE0)) B




A principal component decomposition of the process ¢(f(f()t)) with covariance
function

K( t) SAt— st
S, ==
P(P~1(s))p(P~1(t))
leads to:
T heorem: let {Xn ; be an i.i.d. sequence of normal r.v.. Then

+®Z2—1

n(Rnp — an) —° ———I—Z

where {Zj}j_zog is a sequence of independent N(0,1) normal r.v. and

1 5 t(-b) . , . R
=l (¢(¢_1(t)))2dt. With this expression can be calculated the limit dis

tribution of n(R, — a,) via its characteristic function. [de Wet and Venter,
1972].




Remark: The asymptotic distribution of R,, is proved for X1,..., X, ~ N(0,1),
owing to the following decomposition:

1
S2
where < . ,. > denotes the inner product in L>([0, 1]).

Ro=-=(I1F, -0 3-<Fl—o 1> <Pt — ot >2),

Let us denote by H;(z) the j-th polynomial of Hermite (of degree j).
Ho(x) = 1, Hi(xz) = x. These polynomials form a basis of L>(R) for the inner

product < f,g >= %fRf(ac)g(x)e_%d:c.

The functions H; o 1 are then a basis of Lx([0, 1]), which yields:



Power study under contiguous alternatives
Examples of contiguous mixtures

Let X1,...,X, be an i.i.d sample with underlying d.f.

&, (z) = YN(p,0°%) + (L —y)N(u + oa, 0?),
in two situations:
ey=1-"2,aeR Ry
ev€l0,1],a=F acR.

The purpose: the asymptotic distribution of R,, under these alternatives.

Remark: the contiguity hypothesis here is stated in terms of Wasserstein’s
distance and not of Hellinger’s distance like in the classical contiguity require-
ment on the probability density function ¢,:

[ (vt -6 - %gcbl/?)Q ~o



General hypothesis for a theoretical study of the power

Hypothesis (H): Xi1,...,X, an i.i.d. sample with underlying d.f. &, such that
there exists a d.f. ®,, and u € R,o > 0, with ®,(z) = @n(%wx € R and &,
satisfying (H): there exists a function h in L»>([0, 1]) such that

/1 (\/ﬁ(égl(t) - F_l(t)) — h(t))th — 0,n — oo
0

and h,(t) := /n(P,;1(t) — F~1(t)) is dominated by a function in L4([0,1]). We
also suppose that if ¥, = % the sample variance associated to {Y;} tends
to 1 in probability.
Theorem: suppose we are testing fit to the location-scale family Hg, with F
satisfaying the condition:

1

t(1 —t¢
/ ( ) dt < oo
0

(fF(F1(1)))?
and the set of conditions (*). Let Xi,...,X, be an i.i.d. sample satisfaying

hypothesis (H) for a continuous function h on [0, 1], then nR, converges in
distribution to

1 B(t) )2 _( L B(t) )2_< 1 B(t)
/o(h(t)+f(F1(t)) at /o(h(t)_l_f(Fl(t)))dt /o(h(t”f(Fl(t))

2
)1?1(t)dt)



Theorem in the normal case with a stronger hypothesis (H): we impose

log log n/l (Vn(®@, () — e (D) — h(t))2 dt — 0,n — oo.
0

Under the hypothesis (H), there exist a probability space, r.v. V; with uniform
law on [0, 1] and empirical d.f. G,, and a sequence of Brownian bridges B,, on

this space, such that the Wasserstein statistics R, = M satisfies:

e , “BA() - BB [ BuOh(CL1)
(R ")‘/oh(t)d”l @iy Y] T aeiw)

2 w1 2
o Bn(t) _ W Bu(t) _
_ </o h(t)dt 4 IO > — </o ()DL (t)dt + % ¢(¢_1(t))¢ 1(t)dt>

—I— Op(].).




Supplementary hypothesis:

n—1

if there exists A > 0 such that n f " (R(GH()) — h(t)) = Op(1), then
= Bu(Oh(G;H()) T Bu(t)h(t)
L e i) YT ) aetan®Tort;

and the following decomposition is true:

Theorem: n(R, — an) —* E+°° (2?2 —-EZ?) - EZ? — EZ3 + 3 h2(t)dt, where

Z; is an sequence of normal r.v. with mean EZ; = fol h(t)H;(®~1(t))dt and
covariance EZ;Z; = 26;;, for i,j > 1.




The example of mixtures
For the first example of mixture: ®,(z) = (1 — %)Cb(x) + %Cb(x — a), and

t— d(P-1(t) —a)

) = Ty

For the second example: ®,(z) = yP(z) + (1 —v)P(x — %) and

h(t) = a(1 —v),
which permits to write the expansion of the asymptotic distribution of R,,.



Power study with a weight

The next step of the study will be finding a specifically designed weight for
contiguous mixtures. A weight w will be a positive measurable function on
(0,1). The Lo(w)-Wasserstein distance is

1 1/2
W (F,G) = (/O (F71(t) — G_l(t))Qw(t)dt>

and the test statistics R,, is replaced by

. Wi(Fn,H)

N U%(Fn)

where py,(F) = [§ F~1(H)w(t)dt and o2(F) = [J(F~1(t))2w(t)dt — (uw(F))2.

See [del Barrio, Giné and Utzet, 2003, preprint] for the asymptotic null dis-
tribution for some location-scale families.

Ry,

We hope it can be proved under good conditions that

_ _ B
nHFnl —F 1Hg,w_> Hm_l_hug,w

and thus, look for a weight w which maximizes the norm ||h||§7w.



