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1.Wasserstein's normality test

Wasserstein's distance

P2(R) = {Probability measures on R with �nite second moment}

For P1, P2 ∈ P2(R), the L2 Wasserstein distance between P1 and P2

is

W(P1, P2) = inf
{[

E(X1 −X2)
2
]1/2

: L(X1) = P1,L(X2) = P2

}
.

Expression with the quantile functions F−1
1 and F−1

2 :

W(P1, P2) =

(∫ 1

0

(
F−1
1 (t)− F−1

2 (t)
)2

dt

)1/2

.
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Distance to a location-scale family

A location-scale family is obtained from a law with mean 0, variance
1 and distribution function F as follows :

HF =
{
H : H(x) = F

(
x− µ

σ

)
, µ ∈ R, σ > 0

}
.

If P ∈ P2(R) with distribution function F0, standard deviation σ0 :

W2(P,HF ) = inf
{
W2(P, H) : H ∈ HF

}

= σ2
0 −

(∫ 1

0
F−1
0 (t)F−1(t)dt

)2

.
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Wasserstein's test for normality

We denote by N the normal family, Φ the standard normal distribution
function, Φ−1 the standard normal quantile function, φ the standard
normal density function.

X1, . . . , Xn an i.i.d. sample, Fn the empirical distribution function and
F−1

n the empirical quantile function. The test statistics is a normalized
empirical version of the distance to the normal family.

Rn :=
W2(Fn,N )

S2
n

= 1− (
∫ 1
0 F−1

n (t)Φ−1(t)dt)2

S2
n

Remark : to test �t to the standard normal law, the statistics is
∫ 1

0

(
F−1

n (t)−Φ−1(t)
)2

dt.
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2.Asymptotic distribution for the normality test

Asymptotic distribution under the null hypothesis

Theorem 1 (del Barrio et. al., 1999) Suppose that (Xi)
n
i=1 is an

i.i.d. sample with underlying normal law. Then

nRn −
∫ 1−1

n

1
n

t(1− t)

φ2(Φ−1(t))
dt

converges in distribution to
∫ 1

0

B2(t)− EB2(t)

φ2(Φ−1(t))
dt−

(∫ 1

0

B(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0

B(t)Φ−1(t)

φ(Φ−1(t))
dt

)2

.

where B is a Brownian bridge on [0,1], and the last integrals have to
be understood as L2 limits of the same integrals on [1n,1− 1

n].
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Principal component decomposition for the limit law

Call K the covariance kernel of the centered Gaussian process B
φ◦Φ−1.

For s, t ∈ [0,1] :

K(s, t) =
s ∧ t− st

φ(Φ−1(s))φ(Φ−1(t))
.

It satis�es ∫ 1
0

∫ 1
0 K2(s, t)dsdt < +∞ and in particular, it is continuous

on L2(0,1).

Decomposition in terms of eigenfunctions and eigenvalues :

K(s, t) =
+∞∑

j=0

1

j + 1
fj(s)fj(t).
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The eigenfunctions fj form an orthonormal base of L2(0,1) related
to normalized Hermite polynomials hj by :

fj(t) = hj(Φ
−1(t)), t ∈ [0,1].

The �rst normalized Hermite polynomials are :

h0(x) = 1,

h1(x) = x,

h2(x) =
1√
2
(x2 − 1).

Projecting B
φ◦Φ−11[1n,1−1

n]
on this orthonormal base provides the follo-

wing expression for the limit law

nRn −
∫ 1−1

n

1
n

t(1− t)

φ2(Φ−1(t))
dt

w→ −3

2
+

+∞∑

j=3

Y 2
j − 1

j
,

where {Yj}j is a sequence of independent N(0,1) random variables.
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Asymptotic distribution under alternative

Theorem 2 Suppose that after some possible change in the location
or scale, the variables (Xi)

n
i=1 have distribution function Φn such

that :
hn :=

√
n

(
Φ−1

n −Φ−1
) L2(0,1)−→ h ∈ L2(0,1).

Moreover, we suppose that two additional conditions are satis�ed,
namely (a) and (b) above.
Then nRn −

∫ 1−1
n

1
n

t(1−t)
φ2(Φ−1(t))

dt converges in distribution to

∫ 1

0

B2
h(t)− EB2(t)

φ2(Φ−1(t))
dt−

(∫ 1

0

Bh(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0

Bh(t)Φ
−1(t)

φ(Φ−1(t))
dt

)2

,

where Bh(t) = B(t) + h.φ ◦Φ−1 and B is a Brownian bridge.
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The conditions for the theorem are the following :
• (a) log logn

∫
(hn − h)2 → 0 (additional speed condition)

• (b) log logn
∫
(h ◦G−1

n − h)2 → 0 (additional regularity condition),
where G−1

n is the empirical quantile function associated with uniform
i.i.d. random variables on [0,1].
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3.Representation as a Gaussian shift

Model of Gaussian shift

We use the tools of the theory of Le Cam for statistical experiments,
as exposed in Strasser, 1985. (H, 〈, 〉) denotes a real Hilbert space. An
experiment (Ω,A, {Ph, h ∈ H}) on H is a Gaussian shift experiment,
if and only if for all h, Ph ¿ P0 and the process (L(h))h∈H de�ned by
the log-likelihood ratio

log
dPh

dP0
= L(h)− ‖h‖2

2
,

is a standard Gaussian process under P0, i.e. : it is centered and for
any h1, h2 ∈ H

Cov(L(h1), L(h2)) = 〈h1, h2, 〉.
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Spectral decomposition

If ϕ : Ω → [0,1] is a test function for testing the hypothesis H0 ⊂ H
(for a linear subspace H0, for instance H0 = {0}), then its power
function can be studied under straight lines of alternatives directed
by some h ∈ H\{0} (Janssen, 1995). Suppose that ϕ is α H0-similar.
The function t 7→ Ethϕ admits the following Taylor expansion :

Ethϕ = α + b(h)t + a(h)
t2

2
+ o(t2), t → 0. (1)

Theorem 3 1. There exists a gradient h0 such that :
b(h) = 〈h, h0〉, ∀h ∈ H.

2. There exists a self-adjoint Hilbert-Schmidt operator T : H → H, an
ortonormal system (hi) and eigenvectors (λi) such that :

a(h) = 〈h, T (h)〉∀h ∈ H, and T =
+∞∑

i=1

λi〈., hi〉.
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E�ciency

Theorem 4 We sum up some important properties from Janssen,
1995, based on the generalized Neyman Pearson lemma.
1.‖h0‖ ≤ φ(Φ−1(1− α)).
The equality holds i�

ϕ = 1{L(h0)>Φ−1(1−α)‖h0‖}.

2.The largest eigenvalue of T satis�es the inequality

|λ1| ≤ 2φ

(
Φ−1

(
1− α

2

))
Φ−1

(
1− α

2

)
.

The equality holds i�

ϕ = 1{|L(h1)|>Φ−1(1−α
2)}.
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Janssen (1995) introduces a concept of local asymptotic relative ef-
�ciency :

ARE
(1)
L (ϕ, h) =

( 〈h, h0〉
‖h‖φ(Φ−1(1− α))

)2

.

The equality holds i� ϕ is the one-sided Neyman Pearson test in
direction h.

ARE
(2)
L (ϕ, h) =

〈h, T (h)〉
2‖h‖2φ(Φ−1(1− α

2))Φ
−1(1− α

2)
.

The equality holds i� ϕ is the two-sided Neyman Pearson test in
direction h.
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Gaussian shift for Wasserstein's test

(W (t)t∈[0,1]) a Brownian motion on a probability space with probability
measure P , B the Brownian bridge de�ned by B(t) = W (t) − tW (1).
For g ∈ H = {f ∈ L2(0,1) :

∫ 1
0 f(t)dt = 0}, de�ne

Wg : t → W (t) +
∫ t

0
g(s)ds and h : t →

∫ t
0 g(s)ds

φ(Φ−1(t))
.

Girsanov's theorem : Wg is a Brownian motion under the probability
measure Pg such that :

dPg

dP
= exp

(
−

∫ 1

0
g(s)dW (s)− 1

2
‖g‖2

)
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De�ne the kernel :

K̃(s, t) =
+∞∑

j=3

1

j
fj(s)fj(t)

and for a Brownian motion W form the multiple integral :

K(W ) =
∫ ∫

K̃(s, t)dW (s)dW (t).

Theorem 5 With P -probability 1,

K(Wg) =
∫ ∫

K̃(s, t)dWg(s)dWg(t)

is equal to
∫ 1

0

B2
h(t)− EB2(t)

φ2(Φ−1(t))
dt−

(∫ 1

0

Bh(t)

φ(Φ−1(t))
dt

)2

−
(∫ 1

0

Bh(t)Φ
−1(t)

φ(Φ−1(t))
dt

)2

,

where as before h : t →
∫ t
0 g(s)ds

φ(Φ−1(t))
.
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4.Study of the e�ciency for Wasserstein's test

Gradient and eigenfunctions

The asymptotic α-level test function for Wasserstein's test is hence :

φα(Wg) = 1{K(Wg)>cα},
where cα is chosen to obtain level α. We denote by bα and aα the
functions that appear in the Taylor expansion (1)

Theorem 6 For all α ∈ [0,1], g ∈ H,
(i) bα(g) = 0,
(ii) aα(g) = 〈g, Tαg〉, Tα has decomposition Tα(g) =

∑+∞
i=1 µα,i〈fi, g〉. If

we denote Zi =
∑+∞

k=3,k 6=i
Z2

k−1
k , the eigenvectors are for i ≥ 1 :

µα,i = 1− α−
∫

R

∫

R
y21{y2−1

i +z≤cα}
φ(y)dydPZi

(z).
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Numerical approximation for the eigunvectors.

Simulating variables Zj, we obtain by a Monte-Carlo method an ap-
proximation for the eigenvectors.
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Approximate asymptotic relative e�ciency
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