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1.Wasserstein’s normality test

Vvasserstein’s distance

Po>(R) = {Probability measures on R with finite second moment}

For P, P> € P>(R), the Lo, Wasserstein distance between P; and Ps
IS

W(Py, Po) = inf { E(X1 - X2)2]1/2 L(X1) = Py, L(X5) = PQ} .

Expression with the quantile functions Fl_]L and F2_1 ;

1/2

W(P1, Py) = (/01 (Fl—l(t) — F2—1(t))2dt>



Distance to a location-scale family

A location-scale family is obtained from a law with mean 0O, variance
1 and distribution function F' as follows :

HF={H:H(az)zF(u>,u€R,a>O}.
o
If P € P>(R) with distribution function Fj, standard deviation og :

W2(P,Hp) = inf{WQ(P,H):HEHF}

2
_ gg—</olF51(t)F—1(t)dt> |



Wasserstein’s test for normality

We denote by N the normal family, ® the standard normal distribution
function, ®~1 the standard normal quantile function, ¢ the standard
normal density function.

X1,...,Xpn an i.i.d. sample, F, the empirical distribution function and
Fn_1 the empirical quantile function. The test statistics is a normalized
empirical version of the distance to the normal family.

_WA(FELN) _ L (o BT H(#)d)?
S Sz
Remark : to test fit to the standard normal law, the statistics is

/01 (Fr1(6) — o 1)  dt.

Rn :




2. Asymptotic distribution for the normality test
Asymptotic distribution under the null hypothesis

Theorem 1 (del Barrio et. al., 1999) Suppose that (X;)!—; is an
i.i.d. sample with underlying normal law. Then

1-% (1 —1t)
o= ey

converges in distribution to

1 B2(t) — EB2(t) 1 B(t) 2 1 B(t)d—1(t)  \°

/ S dt — / S _dt) - -t .
0 ¢=(PH(¢)) 0 p(P—(1)) 0 ¢(P—(1))

where B is a Brownian bridge on [0, 1], and the last integrals have to

be understood as Ly limits of the same integrals on [+, 1 — +].




Principal component decomposition for the limit law

B
gboCD_l'

Call K the covariance kernel of the centered Gaussian process
For s,t € [0,1] :

sSAt— st
p(P~1(s))p(P~1(2))
It satisfies [g [3 K2(s,t)dsdt < +oo and in particular, it is continuous
on L2(0,1).

K(s,t) =

Decomposition in terms of eigenfunctions and eigenvalues

—+ o0

1
K = 3 S i@



The eigenfunctions f; form an orthonormal base of L2(0,1) related
to normalized Hermite polynomials hj by :

£i(t) = hi(®~ (1)), t € [0, 1].

The first normalized Hermite polynomials are :

ho(z) = 1,
hi(z) = =,
.
ho(x) = —(z°—1).
2(z) \5( )
Projecting #1[%1_;] on this orthonormal base provides the follo-

wing expression for the limit law

1-% (1 —1t) w3 f
o ey et ST

where {Yj}j is a sequence of independent N(0,1) random variables.
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Asymptotic distribution under alternative

Theorem 2 Suppose that after some possible change in the location

or scale, the variables (X;)I—, have distribution function ®, such
that :

hn = v/ (Pt — 1) 1201 ) ¢ 1,00, 1).

Moreover, we suppose that two additional conditions are satisfied,
namely (a) and (b) above.

1-1 _ e
Then nRp — [; " ¢22$_1t()t))dt converges in distribution to

1 B2(t) — EB2(t) 1 By(t) 2 1 B,()®~1(t)  \?
/o $2(>—1(1)) dt‘</o ¢<¢—1<t>>dt> _<o S(Dd—1(1)) dt) ’

where By, (t) = B(t) + h.p o ®~1 and B is a Brownian bridge.



The conditions for the theorem are the following :

e (3a) loglogn [(hy — k)2 — 0 (additional speed condition)

e (b) loglogn [(ho G, —h)2 — 0 (additional regularity condition),
where G; 1 is the empirical quantile function associated with uniform
i.i.d. random variables on [0, 1].



3.Representation as a Gaussian shift
Model of Gaussian shift

We use the tools of the theory of Le Cam for statistical experiments,
as exposed in Strasser, 1985. (H, (,)) denotes a real Hilbert space. An
experiment (2, A4,{Py,,h € H}) on H is a Gaussian shift experiment,
if and only if for all h, P, < Py and the process (L(h)),cy defined by
the log-likelihood ratio

dP hl|2
0g Xk — 1y 2
dPp 2
IS a standard Gaussian process under Py, i.e. : it is centered and for

any hi,ho € H
Cov(L(h1), L(h2)) = (h1,h2,).



Spectral decomposition

If o : Q2 — [0,1] is a test function for testing the hypothesis Hy C H
(for a linear subspace Hg, for instance Hg = {0}), then its power
function can be studied under straight lines of alternatives directed
by some h € H\{0} (Janssen, 1995). Suppose that ¢ is a Hp-similar.

The function t — Ey;, admits the following Taylor expansion :
42
Egngp = o+ b(h)t + a(h)— + o(t),t — 0. (1)

Theorem 3 1. There exists a gradient hg such that :
b(h) = (h, hg),Vh € H.

2. There exists a self-adjoint Hilbert-Schmidt operatorl’ : H — H, an
ortonormal system (h;) and eigenvectors (\;) such that :

o0
a(h) = (h,T(W))WWh € H, and T = 3 \;(., hy).
1=1
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Efficiency

Theorem 4 We sum up some important properties from Janssen,
1995, based on the generalized Neyman Pearson lemma.

1.||holl < (P~ 1(1 — ).

The equality holds iff

? = HL(ho)>d-1(1-a)|hol]}
2. The largest eigenvalue of I' satisfies the inequality

< 20(o7 (1-9) 02 (1-3)

The equality holds iff

? = Hinmp>e-11-9))
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Janssen (1995) introduces a concept of local asymptotic relative ef-
ficiency :

[hllp(P~1(1 — )
The equality holds iff ¢ is the one-sided Neyman Pearson test in
direction h.

2
AREW (o, h) = ( 1, ho) ) |

(h,T(h))
2||hal2p(P~1(1 —5)P-1(1-5)
The equality holds iff ¢ is the two-sided Neyman Pearson test in
direction h.

ARE{ (¢,h) =
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Gaussian shift for Wasserstein’s test

(W(t)te[o,l]) a Brownian motion on a probability space with probability
measure P, B the Brownian bridge defined by B(t) = W(t) — tW(1).
For g€ H={f € L?(0,1) : fol f(t)dt = 0}, define

Jo 9(s)ds

(P~ ())
Girsanov's theorem : Wy is a Brownian motion under the probability
measure P, such that :

ary _ exp (— /01 g(s)dW (s) — %Hg||2>

t
Wg:t—>W(t)—|—/Og(s)ds and h:t —

dP
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Define the kernel :

_ Tooq
K(s,t) = Y =fi(s)f;j(t)
j=3"
and for a Brownian motion W form the multiple integral :

K(W) = / / R (s, £)dW (s)dW (t).

Theorem 5 With P-probability 1,

(W) = [ [ R(s,0)dWy(s)aWy(®)

is equal to
1 B2(t) — EB2(t) 1B, (1) 2 1B, (o1 \2
b 2@10) (fo ¢<¢—1<t>>dt> ) ( 0 ¢(*71(1)) dt) |
where as before h : t — Jo 9(s)ds

S o(PL()
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4.Study of the efficiency for Wasserstein’'s test

Gradient and eigenfunctions

The asymptotic a-level test function for Wasserstein's test is hence :

da(Wy) = Lic(w,)>ca)
where co 1S chosen to obtain level a. We denote by b, and aq the
functions that appear in the Taylor expansion (1)

Theorem 6 For all « € [0,1],9 € H,
(i) ba(g) = 0O,
(i) aa(g) = (g9, Tag), Ta has decomposition To(g) = ;=% pia.i(fi, 9)- I

Z2—1 .
we denote Z; = Zk 3 ki k , the eigenvectors are for+> 1 :

2
=1 — o — Pz (2).
Hai 1 -« /R/Ry 1{y27;_1 | zgca}qb(y)dyd Zz(z)

15



Numerical approximation for the eigunvectors.

Simulating variables Zj, we obtain by a Monte-Carlo method an ap-
proximation for the eigenvectors.

Eigenvectors for Wasserstein’s normality test
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Approximate asymptotic relative efficiency

Efficiency for Wasserstein's normality test
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