Wasserstein's goodness of fit test under some local alternatives

Hélène Boistard, Eustasio del Barrio Universidad de Valladolid, Spain

1.Wasserstein's normality test

Wasserstein's distance

 $\mathcal{P}_2(\mathbb{R}) = \{ \text{Probability measures on } \mathbb{R} \text{ with finite second moment} \}$

For $P_1, P_2 \in \mathcal{P}_2(\mathbb{R})$, the L_2 Wasserstein distance between P_1 and P_2 is

$$W(P_1, P_2) = \inf \left\{ \left[E(X_1 - X_2)^2 \right]^{1/2} : \mathcal{L}(X_1) = P_1, \mathcal{L}(X_2) = P_2 \right\}.$$

Expression with the quantile functions F_1^{-1} and F_2^{-1} :

$$\mathcal{W}(P_1, P_2) = \left(\int_0^1 \left(F_1^{-1}(t) - F_2^{-1}(t)\right)^2 dt\right)^{1/2}$$

Distance to a location-scale family

A location-scale family is obtained from a law with mean 0, variance 1 and distribution function F as follows :

$$\mathcal{H}_F = \left\{ H : H(x) = F\left(\frac{x-\mu}{\sigma}\right), \mu \in \mathbb{R}, \sigma > 0 \right\}.$$

If $P \in \mathcal{P}_2(\mathbb{R})$ with distribution function F_0 , standard deviation σ_0 :

$$\mathcal{W}^2(P, \mathcal{H}_F) = \inf \left\{ \mathcal{W}^2(P, H) : H \in \mathcal{H}_F \right\}$$
$$= \sigma_0^2 - \left(\int_0^1 F_0^{-1}(t) F^{-1}(t) dt \right)^2$$

Wasserstein's test for normality

We denote by \mathcal{N} the normal family, Φ the standard normal distribution function, Φ^{-1} the standard normal quantile function, ϕ the standard normal density function.

 X_1, \ldots, X_n an i.i.d. sample, F_n the empirical distribution function and F_n^{-1} the empirical quantile function. The test statistics is a normalized empirical version of the distance to the normal family.

$$\mathcal{R}_n := \frac{\mathcal{W}^2(F_n, \mathcal{N})}{S_n^2} = 1 - \frac{(\int_0^1 F_n^{-1}(t) \Phi^{-1}(t) dt)^2}{S_n^2}$$

Remark : to test fit to the standard normal law, the statistics is

$$\int_0^1 \left(F_n^{-1}(t) - \Phi^{-1}(t) \right)^2 dt.$$

2.Asymptotic distribution for the normality test

Asymptotic distribution under the null hypothesis

Theorem 1 (del Barrio et. al., 1999) Suppose that $(X_i)_{i=1}^n$ is an *i.i.d. sample with underlying normal law. Then*

$$n\mathcal{R}_n - \int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^2(\Phi^{-1}(t))} dt$$

converges in distribution to

$$\int_0^1 \frac{B^2(t) - EB^2(t)}{\phi^2(\Phi^{-1}(t))} dt - \left(\int_0^1 \frac{B(t)}{\phi(\Phi^{-1}(t))} dt\right)^2 - \left(\int_0^1 \frac{B(t)\Phi^{-1}(t)}{\phi(\Phi^{-1}(t))} dt\right)^2.$$

where B is a Brownian bridge on [0, 1], and the last integrals have to be understood as L_2 limits of the same integrals on $[\frac{1}{n}, 1 - \frac{1}{n}]$.

Principal component decomposition for the limit law

Call K the covariance kernel of the centered Gaussian process $\frac{B}{\phi \circ \Phi^{-1}}$. For $s, t \in [0, 1]$:

$$K(s,t) = \frac{s \wedge t - st}{\phi(\Phi^{-1}(s))\phi(\Phi^{-1}(t))}.$$

It satisfies $\int_0^1 \int_0^1 K^2(s,t) ds dt < +\infty$ and in particular, it is continuous on $L^2(0,1)$.

Decomposition in terms of eigenfunctions and eigenvalues :

$$K(s,t) = \sum_{j=0}^{+\infty} \frac{1}{j+1} f_j(s) f_j(t).$$

The eigenfunctions f_j form an orthonormal base of $L^2(0,1)$ related to normalized Hermite polynomials h_j by :

$$f_j(t) = h_j(\Phi^{-1}(t)), t \in [0, 1].$$

The first normalized Hermite polynomials are :

$$h_0(x) = 1,$$

 $h_1(x) = x,$
 $h_2(x) = \frac{1}{\sqrt{2}}(x^2 - 1).$

Projecting $\frac{B}{\phi \circ \Phi^{-1}} \mathbf{1}_{[\frac{1}{n}, 1-\frac{1}{n}]}$ on this orthonormal base provides the following expression for the limit law

$$n\mathcal{R}_n - \int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^2(\Phi^{-1}(t))} dt \xrightarrow{w} -\frac{3}{2} + \sum_{j=3}^{+\infty} \frac{Y_j^2 - 1}{j},$$

where $\{Y_j\}_j$ is a sequence of independent N(0, 1) random variables.

Asymptotic distribution under alternative

Theorem 2 Suppose that after some possible change in the location or scale, the variables $(X_i)_{i=1}^n$ have distribution function Φ_n such that :

$$h_n := \sqrt{n} \left(\Phi_n^{-1} - \Phi^{-1} \right) \xrightarrow{L_2(0,1)} h \in L_2(0,1).$$

Moreover, we suppose that two additional conditions are satisfied, namely (a) and (b) above.

namely (a) and (b) above. Then $n\mathcal{R}_n - \int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^2(\Phi^{-1}(t))} dt$ converges in distribution to

$$\int_0^1 \frac{B_h^2(t) - EB^2(t)}{\phi^2(\Phi^{-1}(t))} dt - \left(\int_0^1 \frac{B_h(t)}{\phi(\Phi^{-1}(t))} dt\right)^2 - \left(\int_0^1 \frac{B_h(t)\Phi^{-1}(t)}{\phi(\Phi^{-1}(t))} dt\right)^2,$$

where $B_h(t) = B(t) + h.\phi \circ \Phi^{-1}$ and B is a Brownian bridge.

The conditions for the theorem are the following :

- (a) $\log \log n \int (h_n h)^2 \rightarrow 0$ (additional speed condition)
- (b) $\log \log n \int (h \circ G_n^{-1} h)^2 \to 0$ (additional regularity condition),

where G_n^{-1} is the empirical quantile function associated with uniform i.i.d. random variables on [0, 1].

3. Representation as a Gaussian shift

Model of Gaussian shift

We use the tools of the theory of Le Cam for statistical experiments, as exposed in Strasser, 1985. (H, \langle, \rangle) denotes a real Hilbert space. An experiment $(\Omega, \mathcal{A}, \{P_h, h \in H\})$ on H is a Gaussian shift experiment, if and only if for all $h, P_h \ll P_0$ and the process $(L(h))_{h \in H}$ defined by the log-likelihood ratio

$$\log \frac{dP_h}{dP_0} = L(h) - \frac{\|h\|^2}{2},$$

is a standard Gaussian process under P_0 , i.e. : it is centered and for any $h_1, h_2 \in H$

$$Cov(L(h_1), L(h_2)) = \langle h_1, h_2, \rangle.$$

Spectral decomposition

If $\varphi : \Omega \to [0,1]$ is a test function for testing the hypothesis $H_0 \subset H$ (for a linear subspace H_0 , for instance $H_0 = \{0\}$), then its power function can be studied under straight lines of alternatives directed by some $h \in H \setminus \{0\}$ (Janssen, 1995). Suppose that φ is α H_0 -similar. The function $t \mapsto E_{th}\varphi$ admits the following Taylor expansion :

$$E_{th}\varphi = \alpha + b(h)t + a(h)\frac{t^2}{2} + o(t^2), t \to 0.$$
 (1)

Theorem 3 1. There exists a gradient h_0 such that :

 $b(h) = \langle h, h_0 \rangle, \forall h \in H.$

2. There exists a self-adjoint Hilbert-Schmidt operator $T : H \to H$, an ortonormal system (h_i) and eigenvectors (λ_i) such that :

$$a(h) = \langle h, T(h) \rangle \forall h \in H, \text{ and } T = \sum_{i=1}^{+\infty} \lambda_i \langle ., h_i \rangle.$$

Efficiency

Theorem 4 We sum up some important properties from Janssen, 1995, based on the generalized Neyman Pearson lemma. $1.\|h_0\| \le \phi(\Phi^{-1}(1-\alpha)).$ The equality holds iff

$$\varphi = \mathbf{1}_{\{L(h_0) > \Phi^{-1}(1-\alpha) \| h_0 \|\}}.$$

2. The largest eigenvalue of T satisfies the inequality

$$|\lambda_1| \le 2\phi \left(\Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \right) \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$

The equality holds iff

$$\varphi = \mathbf{1}_{\{|L(h_1)| > \Phi^{-1}(1 - \frac{\alpha}{2})\}}.$$

Janssen (1995) introduces a concept of local asymptotic relative efficiency :

$$ARE_L^{(1)}(\varphi,h) = \left(\frac{\langle h, h_0 \rangle}{\|h\|\phi(\Phi^{-1}(1-\alpha))}\right)^2$$

The equality holds iff φ is the one-sided Neyman Pearson test in direction h.

$$ARE_{L}^{(2)}(\varphi,h) = \frac{\langle h, T(h) \rangle}{2\|h\|^{2}\phi(\Phi^{-1}(1-\frac{\alpha}{2}))\Phi^{-1}(1-\frac{\alpha}{2})}.$$

The equality holds iff φ is the two-sided Neyman Pearson test in direction h.

Gaussian shift for Wasserstein's test

 $(W(t)_{t \in [0,1]})$ a Brownian motion on a probability space with probability measure P, B the Brownian bridge defined by B(t) = W(t) - tW(1). For $g \in H = \{f \in L^2(0,1) : \int_0^1 f(t) dt = 0\}$, define

$$W_g: t \to W(t) + \int_0^t g(s) ds \text{ and } h: t \to rac{\int_0^t g(s) ds}{\phi(\Phi^{-1}(t))}.$$

Girsanov's theorem : W_g is a Brownian motion under the probability measure P_g such that :

$$\frac{dP_g}{dP} = \exp\left(-\int_0^1 g(s)dW(s) - \frac{1}{2}||g||^2\right)$$

Define the kernel :

$$\tilde{K}(s,t) = \sum_{j=3}^{+\infty} \frac{1}{j} f_j(s) f_j(t)$$

and for a Brownian motion W form the multiple integral :

$$\mathcal{K}(W) = \int \int \tilde{K}(s,t) dW(s) dW(t).$$

Theorem 5 With *P*-probability 1,

$$\mathcal{K}(W_g) = \int \int \tilde{K}(s,t) dW_g(s) dW_g(t)$$

is equal to

$$\int_{0}^{1} \frac{B_{h}^{2}(t) - EB^{2}(t)}{\phi^{2}(\Phi^{-1}(t))} dt - \left(\int_{0}^{1} \frac{B_{h}(t)}{\phi(\Phi^{-1}(t))} dt\right)^{2} - \left(\int_{0}^{1} \frac{B_{h}(t)\Phi^{-1}(t)}{\phi(\Phi^{-1}(t))} dt\right)^{2},$$

where as before $h: t \to \frac{\int_{0}^{t} g(s) ds}{\phi(\Phi^{-1}(t))}.$

4. Study of the efficiency for Wasserstein's test

Gradient and eigenfunctions

The asymptotic α -level test function for Wasserstein's test is hence :

$$\phi_{\alpha}(W_g) = \mathbf{1}_{\{\mathcal{K}(W_g) > c_{\alpha}\}},$$

where c_{α} is chosen to obtain level α . We denote by b_{α} and a_{α} the functions that appear in the Taylor expansion (1)

Theorem 6 For all $\alpha \in [0,1], g \in H$, (i) $b_{\alpha}(g) = 0$, (ii) $a_{\alpha}(g) = \langle g, T_{\alpha}g \rangle$, T_{α} has decomposition $T_{\alpha}(g) = \sum_{i=1}^{+\infty} \mu_{\alpha,i} \langle f_i, g \rangle$. If we denote $Z_i = \sum_{k=3, k \neq i}^{+\infty} \frac{Z_k^2 - 1}{k}$, the eigenvectors are for $i \ge 1$: $\mu_{\alpha,i} = 1 - \alpha - \int_{\mathbb{R}} \int_{\mathbb{R}} y^2 \mathbf{1}_{\{\frac{y^2 - 1}{i} + z < c_{\alpha}\}} \phi(y) dy dP_{Z_i}(z)$.

Numerical approximation for the eigunvectors.

Simulating variables Z_j , we obtain by a Monte-Carlo method an approximation for the eigenvectors.

Approximate asymptotic relative efficiency

References

Del Barrio, E., J.A. Cuesta-Albertos, C. Matrán and J. Rodríguez-Rodríguez (1999). Tests of goodness of fit based on the L_2 Wasserstein distance, *Annals of Statistics*, **27**, 1230-1239. Janssen, A. (1995). Principal component decomposition of non-parametric tests, *Probability Theory Related Fields*, **101(2)**, 193-209. Strasser, H. (1985). Mathematical Theory of Statistics, *De Gruyter*, Berlin.