Wasserstein's goodness of fit test under some local alternatives

Hélène Boistard, Eustasio del Barrio
Universidad de Valladolid, Spain

1.Wasserstein's normality test

Wasserstein's distance

$\mathcal{P}_{2}(\mathbb{R})=\{$ Probability measures on \mathbb{R} with finite second moment $\}$

For $P_{1}, P_{2} \in \mathcal{P}_{2}(\mathbb{R})$, the L_{2} Wasserstein distance between P_{1} and P_{2} is

$$
\mathcal{W}\left(P_{1}, P_{2}\right)=\inf \left\{\left[E\left(X_{1}-X_{2}\right)^{2}\right]^{1 / 2}: \mathcal{L}\left(X_{1}\right)=P_{1}, \mathcal{L}\left(X_{2}\right)=P_{2}\right\}
$$

Expression with the quantile functions F_{1}^{-1} and F_{2}^{-1} :

$$
\mathcal{W}\left(P_{1}, P_{2}\right)=\left(\int_{0}^{1}\left(F_{1}^{-1}(t)-F_{2}^{-1}(t)\right)^{2} d t\right)^{1 / 2}
$$

Distance to a location-scale family

A location-scale family is obtained from a law with mean 0 , variance 1 and distribution function F as follows:

$$
\mathcal{H}_{F}=\left\{H: H(x)=F\left(\frac{x-\mu}{\sigma}\right), \mu \in \mathbb{R}, \sigma>0\right\} .
$$

If $P \in \mathcal{P}_{2}(\mathbb{R})$ with distribution function F_{0}, standard deviation σ_{0} :

$$
\begin{aligned}
\mathcal{W}^{2}\left(P, \mathcal{H}_{F}\right) & =\inf \left\{\mathcal{W}^{2}(P, H): H \in \mathcal{H}_{F}\right\} \\
& =\sigma_{0}^{2}-\left(\int_{0}^{1} F_{0}^{-1}(t) F^{-1}(t) d t\right)^{2}
\end{aligned}
$$

Wasserstein's test for normality

We denote by \mathcal{N} the normal family, Φ the standard normal distribution function, Φ^{-1} the standard normal quantile function, ϕ the standard normal density function.
X_{1}, \ldots, X_{n} an i.i.d. sample, F_{n} the empirical distribution function and F_{n}^{-1} the empirical quantile function. The test statistics is a normalized empirical version of the distance to the normal family.

$$
\mathcal{R}_{n}:=\frac{\mathcal{W}^{2}\left(F_{n}, \mathcal{N}\right)}{S_{n}^{2}}=1-\frac{\left(\int_{0}^{1} F_{n}^{-1}(t) \Phi^{-1}(t) d t\right)^{2}}{S_{n}^{2}}
$$

Remark : to test fit to the standard normal law, the statistics is

$$
\int_{0}^{1}\left(F_{n}^{-1}(t)-\Phi^{-1}(t)\right)^{2} d t
$$

2.Asymptotic distribution for the normality test

Asymptotic distribution under the null hypothesis

Theorem 1 (del Barrio et. al., 1999) Suppose that $\left(X_{i}\right)_{i=1}^{n}$ is an i.i.d. sample with underlying normal law. Then

$$
n \mathcal{R}_{n}-\int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t
$$

converges in distribution to

$$
\int_{0}^{1} \frac{B^{2}(t)-E B^{2}(t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t-\left(\int_{0}^{1} \frac{B(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}-\left(\int_{0}^{1} \frac{B(t) \Phi^{-1}(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}
$$

where B is a Brownian bridge on $[0,1]$, and the last integrals have to be understood as L_{2} limits of the same integrals on $\left[\frac{1}{n}, 1-\frac{1}{n}\right]$.

Principal component decomposition for the limit law

Call K the covariance kernel of the centered Gaussian process $\frac{B}{\phi \circ \Phi^{-1}}$. For $s, t \in[0,1]$:

$$
K(s, t)=\frac{s \wedge t-s t}{\phi\left(\Phi^{-1}(s)\right) \phi\left(\Phi^{-1}(t)\right)}
$$

It satisfies $\int_{0}^{1} \int_{0}^{1} K^{2}(s, t) d s d t<+\infty$ and in particular, it is continuous on $L^{2}(0,1)$.

Decomposition in terms of eigenfunctions and eigenvalues:

$$
K(s, t)=\sum_{j=0}^{+\infty} \frac{1}{j+1} f_{j}(s) f_{j}(t)
$$

The eigenfunctions f_{j} form an orthonormal base of $L^{2}(0,1)$ related to normalized Hermite polynomials h_{j} by:

$$
f_{j}(t)=h_{j}\left(\Phi^{-1}(t)\right), t \in[0,1]
$$

The first normalized Hermite polynomials are :

$$
\begin{aligned}
h_{0}(x) & =1 \\
h_{1}(x) & =x \\
h_{2}(x) & =\frac{1}{\sqrt{2}}\left(x^{2}-1\right)
\end{aligned}
$$

Projecting $\frac{B}{\phi \circ \Phi^{-1}} 1\left[\frac{1}{n}, 1-\frac{1}{n}\right]$ on this orthonormal base provides the following expression for the limit law

$$
n \mathcal{R}_{n}-\int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t \xrightarrow{w}-\frac{3}{2}+\sum_{j=3}^{+\infty} \frac{Y_{j}^{2}-1}{j}
$$

where $\left\{Y_{j}\right\}_{j}$ is a sequence of independent $N(0,1)$ random variables.

Asymptotic distribution under alternative

Theorem 2 Suppose that after some possible change in the location or scale, the variables $\left(X_{i}\right)_{i=1}^{n}$ have distribution function Φ_{n} such that :

$$
h_{n}:=\sqrt{n}\left(\Phi_{n}^{-1}-\Phi^{-1}\right) \xrightarrow{L_{2}(0,1)} h \in L_{2}(0,1) .
$$

Moreover, we suppose that two additional conditions are satisfied, namely (a) and (b) above.
Then $n \mathcal{R}_{n}-\int_{\frac{1}{n}}^{1-\frac{1}{n}} \frac{t(1-t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t$ converges in distribution to

$$
\int_{0}^{1} \frac{B_{h}^{2}(t)-E B^{2}(t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t-\left(\int_{0}^{1} \frac{B_{h}(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}-\left(\int_{0}^{1} \frac{B_{h}(t) \Phi^{-1}(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}
$$

where $B_{h}(t)=B(t)+h . \phi \circ \Phi^{-1}$ and B is a Brownian bridge.

The conditions for the theorem are the following :

- (a) $\log \log n \int\left(h_{n}-h\right)^{2} \rightarrow 0$ (additional speed condition)
- (b) $\log \log n \int\left(h \circ G_{n}^{-1}-h\right)^{2} \rightarrow 0$ (additional regularity condition), where G_{n}^{-1} is the empirical quantile function associated with uniform i.i.d. random variables on $[0,1]$.

3.Representation as a Gaussian shift

Model of Gaussian shift

We use the tools of the theory of Le Cam for statistical experiments, as exposed in Strasser, 1985. (H,\langle,$\rangle) denotes a real Hilbert space. An$ experiment $\left(\Omega, \mathcal{A},\left\{P_{h}, h \in H\right\}\right)$ on H is a Gaussian shift experiment, if and only if for all $h, P_{h} \ll P_{0}$ and the process $(L(h))_{h \in H}$ defined by the log-likelihood ratio

$$
\log \frac{d P_{h}}{d P_{0}}=L(h)-\frac{\|h\|^{2}}{2},
$$

is a standard Gaussian process under P_{0}, i.e. : it is centered and for any $h_{1}, h_{2} \in H$

$$
\operatorname{Cov}\left(L\left(h_{1}\right), L\left(h_{2}\right)\right)=\left\langle h_{1}, h_{2},\right\rangle .
$$

Spectral decomposition

If $\varphi: \Omega \rightarrow[0,1]$ is a test function for testing the hypothesis $H_{0} \subset H$ (for a linear subspace H_{0}, for instance $H_{0}=\{0\}$), then its power function can be studied under straight lines of alternatives directed by some $h \in H \backslash\{0\}$ (Janssen, 1995). Suppose that φ is αH_{0}-similar. The function $t \mapsto E_{t h} \varphi$ admits the following Taylor expansion:

$$
\begin{equation*}
E_{t h} \varphi=\alpha+b(h) t+a(h) \frac{t^{2}}{2}+o\left(t^{2}\right), t \rightarrow 0 \tag{1}
\end{equation*}
$$

Theorem 3 1. There exists a gradient h_{0} such that:

$$
b(h)=\left\langle h, h_{0}\right\rangle, \forall h \in H
$$

2. There exists a self-adjoint Hilbert-Schmidt operator $T: H \rightarrow H$, an ortonormal system $\left(h_{i}\right)$ and eigenvectors $\left(\lambda_{i}\right)$ such that:

$$
a(h)=\langle h, T(h)\rangle \forall h \in H, \text { and } T=\sum_{i=1}^{+\infty} \lambda_{i}\left\langle\cdot, h_{i}\right\rangle .
$$

Efficiency

Theorem 4 We sum up some important properties from Janssen, 1995, based on the generalized Neyman Pearson lemma.
1 . $\left\|h_{0}\right\| \leq \phi\left(\Phi^{-1}(1-\alpha)\right)$.
The equality holds iff

$$
\varphi=1_{\left\{L\left(h_{0}\right)>\Phi^{-1}(1-\alpha)\left\|h_{0}\right\|\right\}}
$$

2. The largest eigenvalue of T satisfies the inequality

$$
\left|\lambda_{1}\right| \leq 2 \phi\left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) \Phi^{-1}\left(1-\frac{\alpha}{2}\right) .
$$

The equality holds iff

$$
\varphi=1_{\left\{\left|L\left(h_{1}\right)\right|>\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right\}} .
$$

Janssen (1995) introduces a concept of local asymptotic relative efficiency:

$$
A R E_{L}^{(1)}(\varphi, h)=\left(\frac{\left\langle h, h_{0}\right\rangle}{\|h\| \phi\left(\Phi^{-1}(1-\alpha)\right)}\right)^{2}
$$

The equality holds iff φ is the one-sided Neyman Pearson test in direction h.

$$
A R E_{L}^{(2)}(\varphi, h)=\frac{\langle h, T(h)\rangle}{2\|h\|^{2} \phi\left(\Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right) \Phi^{-1}\left(1-\frac{\alpha}{2}\right)}
$$

The equality holds iff φ is the two-sided Neyman Pearson test in direction h.

Gaussian shift for Wasserstein's test

$\left(W(t)_{t \in[0,1]}\right)$ a Brownian motion on a probability space with probability measure P, B the Brownian bridge defined by $B(t)=W(t)-t W(1)$. For $g \in H=\left\{f \in L^{2}(0,1): \int_{0}^{1} f(t) d t=0\right\}$, define

$$
W_{g}: t \rightarrow W(t)+\int_{0}^{t} g(s) d s \text { and } h: t \rightarrow \frac{\int_{0}^{t} g(s) d s}{\phi\left(\Phi^{-1}(t)\right)}
$$

Girsanov's theorem : W_{g} is a Brownian motion under the probability measure P_{g} such that :

$$
\frac{d P_{g}}{d P}=\exp \left(-\int_{0}^{1} g(s) d W(s)-\frac{1}{2}\|g\|^{2}\right)
$$

Define the kernel :

$$
\tilde{K}(s, t)=\sum_{j=3}^{+\infty} \frac{1}{j} f_{j}(s) f_{j}(t)
$$

and for a Brownian motion W form the multiple integral :

$$
\mathcal{K}(W)=\iint \widetilde{K}(s, t) d W(s) d W(t)
$$

Theorem 5 With P-probability 1,

$$
\mathcal{K}\left(W_{g}\right)=\iint \tilde{K}(s, t) d W_{g}(s) d W_{g}(t)
$$

is equal to

$$
\int_{0}^{1} \frac{B_{h}^{2}(t)-E B^{2}(t)}{\phi^{2}\left(\Phi^{-1}(t)\right)} d t-\left(\int_{0}^{1} \frac{B_{h}(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}-\left(\int_{0}^{1} \frac{B_{h}(t) \Phi^{-1}(t)}{\phi\left(\Phi^{-1}(t)\right)} d t\right)^{2}
$$

where as before $h: t \rightarrow \frac{\int_{0}^{t} g(s) d s}{\phi\left(\Phi^{-1}(t)\right)}$.

4.Study of the efficiency for Wasserstein's test

Gradient and eigenfunctions

The asymptotic α-level test function for Wasserstein's test is hence :

$$
\phi_{\alpha}\left(W_{g}\right)=1_{\left\{\mathcal{K}\left(W_{g}\right)>c_{\alpha}\right\}}
$$

where c_{α} is chosen to obtain level α. We denote by b_{α} and a_{α} the functions that appear in the Taylor expansion (1)

Theorem 6 For all $\alpha \in[0,1], g \in H$,
(i) $b_{\alpha}(g)=0$,
(ii) $a_{\alpha}(g)=\left\langle g, T_{\alpha} g\right\rangle, T_{\alpha}$ has decomposition $T_{\alpha}(g)=\sum_{i=1}^{+\infty} \mu_{\alpha, i}\left\langle f_{i}, g\right\rangle$. If we denote $Z_{i}=\sum_{k=3, k \neq i}^{+\infty} \frac{Z_{k}^{2}-1}{k}$, the eigenvectors are for $i \geq 1$:

$$
\mu_{\alpha, i}=1-\alpha-\int_{\mathbb{R}} \int_{\mathbb{R}} y^{2} 1_{\left\{\frac{y^{2}-1}{i}+z \leq c_{\alpha}\right\}} \phi(y) d y d P_{Z_{i}}(z) .
$$

Numerical approximation for the eigunvectors.

Simulating variables Z_{j}, we obtain by a Monte-Carlo method an approximation for the eigenvectors.

Approximate asymptotic relative efficiency

References

Del Barrio, E., J.A. Cuesta-Albertos, C. Matrán and J. RodríguezRodríguez (1999). Tests of goodness of fit based on the L_{2} Wasserstein distance, Annals of Statistics, 27, 1230-1239.
Janssen, A. (1995). Principal component decomposition of non-parametric tests, Probability Theory Related Fields, 101(2), 193-209. Strasser, H. (1985). Mathematical Theory of Statistics, De Gruyter, Berlin.

