
Large deviations for L-statistics

Hélène Boistard ∗

Summary: The purpose of this paper is to establish a functional Large Deviations Principle (LDP) for L-statistics under some
new tail conditions. The method is based on Sanov’s theorem and on basic tools of large deviations theory. Our study includes a
full treatment of the case of the uniform law and an example in which the rate function can be calculated very precisely. We extend
our result by a LDP for normalized L-statistics. The case of the exponential distribution, which is not in the scope of the previous
conditions, is completely treated with another method. We provide a functional LDP obtained via Gärtner-Ellis Theorem.

1 Introduction
In this paper, we will consider L-statistics. That means that we will study the following random variable

An =
n∑

i=1

an,iX(i). (1.1)

All along the article, (Xi)n
i=1 is an i.i.d. sample with distribution function F , (X(i))n

i=1 is the associated order
statistics, and (an,i)n

i=1 are some coefficients. It is often assumed that these coefficients are closely related to some
given function a : [0, 1] → Rk in the following way:

an,i =
1
n
a

(
i

n

)
.

Some examples of L-statistics include the α-trimmed mean:

1
n− 2[αn]

n−[αn]∑
i=[αn]+1

X(i), (1.2)

or Gini’s mean difference

1
C2

n

∑
i<j

|Xi −Xj | =
1
C2

n

n∑
i=1

(−n+ 2i− 1)X(i), (1.3)

which estimates the dispersion parameter E (|X1 −X2|) (see Example 5.3 in Stigler [17]).
Many asymptotic results have been obtained for L-statistics. The results in the literature apply to more general

L-statistics, namely:

An =
n∑

i=1

an,ib(X(i)),

∗The author has been partially supported by the Spanish Ministerio de Ciencia y Tecnologı́a and FEDER, grant BFM2005-04430-C02-01 and
02 and by the Consejerı́a de Educación y Cultura de la Junta de Castilla y León, grant PAPIJCL VA102/06.
A.M.S. 2000 subject classification: Primary: 60F10, secondary: 62G20
Key words and phrases: Large Deviations, L-statistics

1



2 Boistard

where b is some fixed function. In general, the authors formulate conditions either on the scores an,i or on the function
b. We focus here on the case of b being the identity function.

A strong law of large numbers is obtained in Wellner [21], [22] and in van Zwet [19] using the Glivenko-Cantelli
theorem. In Stigler [17], a central limit theorem is obtained via Hájek projections. Another way to obtain a CLT is
proposed in Helmers [10], with Berry-Esseen-type bounds. The tool used there is an approximation by U -statistics.
This is done also in Vandemaele [20]. A very complete version of the CLT with necessary and sufficient conditions
is proved in Mason and Shorack [12], via empirical processes theory. For weaker conditions on the function b, a CLT
and a LIL theorem can be found in Li et al. [11].

We refer to Shorack and Wellner [16] for an exposition of the strong LLN, LIL and CLT in a unified way. For a
very clear proof of the CLT, we refer to van der Vaart [18]. Two approaches are treated: the method of Stigler [17] and
the ∆-method, using the theory of empirical processes.

For LDP-type results, we cite three relevant references: Groeneboom, Oosterhoof and Ruymgaart [8] (Section 6),
Groeneboom [7] (Section 1.6) and Groeneboom and Shorack [9] (Section 3). These articles give results for L-statistics
written for some function a ∈ L1(0, 1) as:

An =
n∑

i=1

X(i)

∫ i/n

(i−1)/n

a(t)dt =
∫ 1

0

a(t)F−1
n (t)dt, (1.4)

where F−1
n is the empirical quantile function defined as: F−1

n : t 7→ X(i) for t ∈ ( i−1
n , i

n ]. There, An is seen as
a functional of the empirical distribution function Fn. Hence, a natural method is to use the LDP for the empirical
measure given by Sanov’s theorem and the contraction principle. However, Sanov’s theorem cannot be used directly.
The topology on the space of measures has to be strengthened into the τ -topology. Although the weak topology is
generated by the continuous bounded functions, the τ -topology is generated by the measurable bounded functions (see
for instance Dembo and Zeitouni [5], p263). Some hypothesis on the weight function a and the tails of the underlying
distribution are introduced. In the first two references, a is asked to have bounded support. A more general result is
available in Groeneboom and Shorack [9], Corollary 3. We reproduce it in Theorem 1.1 below. Before stating that
result, we recall the definition for the Kullback information of some distribution function G with respect to F : it is
given by

K(G,F ) =

{∫
R log dG

dF dG if G� F

+∞ else.

We define the rate function

I0(C) = inf
G−1 quantile function:

R
aG−1=C

K(G,F ).

Theorem 1.1 (Groeneboom and Shorack 1981) The weight function a is supposed to be an L1 function satisfying for
each c: ∫ 1

1/2

∣∣a(t)F−1
(
1− e−

c
1−t
)∣∣ dt <∞, and

∫ 1/2

0

∣∣a(t)F−1
(
1− e−

c
t

)∣∣ dt <∞, (1.5)

a ≥ 0 on an interval (γ, δ) ⊂ (0, 1) and
∫ δ

γ

a(t)dt > 0. (1.6)

Then An (defined in (1.4)) satisfies for all r ∈ R:

lim
n→∞

1
n

logP (An ≤ r) = − inf{I0(C) : C ≤ r}.

We can observe that this is not a full LDP, since the rate function is only obtained for sets which are half-lines (remark
that the lower half-lines can be treated using the function −a). Nevertheless, under further conditions, the full LDP
can be deduced. We give here some clues to derive this LDP. This proof follows the same principles as the proof of
Cramér’s theorem (e.g., Teorema 2.2.3 en Dembo y Zeitouni [5]). The lower bound does not need further hypothesis.
Our method to prove the upper bound does require an additional condition, which is the following:

I0 is decreasing on the interval
(
−∞,

∫
aF−1

)
and increasing on the interval

(∫
aF−1,+∞

)
. (1.7)
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Theorem 1.2 Let us suppose that the hypothesis of Theorem 1.1 are satisfied. Then,
(i) for every open set O ⊂ R,

lim inf
1
n

logP (An ∈ O) ≥ − inf{I0(C) : C ∈ O}.

(ii) If moreover, the monotony condition (1.7) is satisfied, then for every closed subset U ⊂ R,

lim sup
1
n

logP (An ∈ U) ≤ − inf{I0(C) : C ∈ U}.

Proof: (i) Let O be some open subset. We prove that for all x ∈ O,

lim inf
1
n

logP (An ∈ O) ≥ −I0(x). (1.8)

Let x ∈ O. We assume that x ≤
∫
aF−1. A similar proof can be performed when x ≥

∫
aF−1. If I0(x) = +∞, then

(1.8) is obvious. Hence, let us suppose that I0(x) <∞. Let [x− ε, x+ ε] be a closed neighbourhood of x included in
O. By Theorem 1.1, for n large enough, P (An ≤ x+ ε) ≥ P (An ≤ x) 6= 0.

1
n

logP (An ∈ O) ≥ 1
n

logP (An ∈ [x− ε, x+ ε])

≥ 1
n

log (P (An ≤ x+ ε)− P (An ≤ x− ε))

=
1
n

logP (An ≤ x+ ε) +
1
n

log
(

1− P (An ≤ x− ε)
P (An ≤ x+ ε)

)
By Theorem 1.1,

1
n

logP (An ≤ x+ ε) → − inf{I0(C) : C ≤ x+ ε} ≥ −I0(x).

Similarly, denoting I0(V ) = inf{I0(x) : x ∈ V } for all subset V :

1− P (An ≤ x− ε)
P (An ≤ x+ ε)

= 1− en 1
n log P (An≤x−ε)

en 1
n log P (An≤x+ε)

= 1− exp
(
−nI0 ((−∞, x− ε])

(
1− I0 ((−∞, x+ ε])

I0 ((−∞, x− ε])
+ o(1)

))
→ 1, when n→∞.

Therefore,

lim inf
1
n

logP (An ∈ O) ≥ −I0(x).

(ii) Let U 6= ∅ be some closed subset and (x−, x+) the biggest open interval included in U c and containing
∫
aF−1.

As U is closed and non-empty, either x− or x+ is in U and U is included in (−∞, x−] ∪ [x+,∞). For all ε > 0, for
n large enough,

P (An ∈ U) ≤ P (An ≤ x−) + P (An ≥ x+)
≤ 2e−nI0(U)+nε (1.9)

Indeed, by Theorem 1.1, for n large enough, using Condition (1.7):

1
n

logP (An ≤ x−) ≤ − inf{I0(C) : C ≤ x−}+ ε

= −I0(x−) + ε by (1.7)

The same happens with x+, which leads to:

P (An ≤ x−) ≤ e−n(I0(x−)−ε) and
P (An ≥ x+) ≤ e−n(I0(x+)−ε)
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But when x− is finite, it is an element of U and: I0(x−) ≥ I0(U). The same occurs with x+. When they are not
finite, they do not appear in the bound (1.9). This ends up with the proof of (1.9). We deduce that: for all ε > 0,

1
n

logP (An ∈ U) ≤ 1
n

log(2)− I0(U) + ε.

This implies:

lim sup
1
n

logP (An ∈ U) ≤ −I0(U) + ε

≤ −I0(U), when ε tends to 0.

2

In this paper, we present an analogous result for L-statistics which can be written as in (1.4), under another set of
conditions for the function a and the tails of the underlying distribution. The first step of our method is the obtention
of a LDP result for the empirical measure in the space of probability measures with finite second moment. That space
can be equipped with the L2-Wasserstein distance. In fact, we formulate the LDP for the empirical quantile function
F−1

n seen as an element of L2(0, 1). The conditions on F are formulated in (i) or (ii) in Theorem 2.1 below. For
a ∈ L2(0, 1), the L-statistic (1.4) is a continuous functional of F−1

n for that topology. Then, a simple application of
the contraction principle allows to derive a LDP result for L-statistics as in (1.4).

The main apportation of this method is that it allows a completely functional treatment. On the other hand, the
underlying distribution is asked to have lighter tails.

We also relax the condition on a in the case of the exponential distribution. Indeed, Theorem 1.1 does not allow to
treat the case of fonctions a which do not tend to 0 at 1 (see the remarks at the beginnig of Section 3 for more details).
In Theorem 3.3 below, we obtain a functional LDP which allows to treat L-statistics for underlying exponential
distribution, for the class of continuous functions.

This paper is organized as follows. Section 2 is devoted to our LDP result for L-statistics under tail conditions on
the underlying distribution and on the function a. It contains some examples and an extension to the problem of large
deviations for the normalized empirical quantile function, with an application to normalized L-statistics. Section 3 is
dedicated to the case of the exponential distribution. Further, to be self-contained, we write an appendix where we
recall useful facts on large deviations.

We introduce now some definitions and notations which will be used in the rest of the paper.
We will call P(R) the set of all probability measures on R equipped with the topology of convergence in distribu-

tion. M(R) will denote the set of all quantile functions of probability measures on R. It is equipped with the topology
induced by convergence in distribution. Hence, there is a topological isomorphism between P(R) and M(R).

P2(R) ⊂ P(R) will denote the space of probability measures on R with a finite second moment. It is equipped
with the L2-Wasserstein distance. For P , Q ∈ P2(R), this distance is defined as

W(P,Q) = inf
{(
E(X − Y )2

)1/2
,L(X) = P,L(Y ) = Q

}
,

where L(X) denotes the distribution of X . For a distribution function G, G−1 will always denote the corresponding
quantile function. It is defined as the generalized inverse of G as follows:

G−1(t) = inf{x : G(x) ≥ t}, t ∈ (0, 1).

It is a left-continuous increasing function with range equal to the support of G.
A useful property is the expression of W(P,Q) in terms of the quantile functions G−1 and H−1 of P and Q:

W(P,Q) =
(∫

(G−1 −H−1)2
)1/2

. (1.10)

We refer to del Barrio et al. [4], Section 3.3 and the references therein for more details on the Wasserstein distance.
Naturally, M2(R) ⊂ M(R) is defined as the set of quantile functions of probability measures on R with a finite

second moment. M2(R) ⊂ L2(0, 1) and can be equipped with the topology inherited from the Hilbert space L2(0, 1).
With the help of (1.10), we see that there is a topological isomorphism between P2(R) and M2(R).
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2 LDP for L-statistics under tail condition
In this section, we state a functional LDP for the empirical quantile function under strong and relaxed tail conditions.
L-statistics can be obtained via a continuous transformation of the empirical quantile function. So, we obtain a LDP for
L-statistics. The main results are presented in Subsection 2.1. Some examples of L-statistics are treated in Subsection
2.2. As a corollary of the LDP for the empirical quantile function, we obtain a LDP for a normalized empirical quantile
function in Subsection 2.3. This can be applied to some normalized L-statistics. The technical proofs are postponed
to Subsection 2.4.

2.1 Functional LDP for the empirical quantile function in L2(0, 1)

Our method to obtain a functional LDP for the quantile function is based on Sanov’s theorem for the empirical measure
(Theorem 6.2.10 in Dembo and Zeitouni [5]). The idea is to reinforce the topology of P(R) without losing the LDP.
An appropriate topology is the one induced by the Wasserstein distance on the subspace P2(R).

The strong tail condition we will require is the following: there exists ϕ : R → R with ϕ(x) → +∞ as |x| → ∞,
and t > 0 such that

E
(
etX2

1ϕ(X1)
)
< +∞. (2.1)

This condition is trivially satisfied for distributions with a bounded support, so that a truncation argument allows us to
derive also a LDP under a relaxed tail condition (Condition (ii) in Theorem 2.1).

We now state the main theorem.

Theorem 2.1 We assume one of the following conditions:
(i) (2.1) is satisfied.
(ii) The r.v. X2

1 has a Laplace transform defined on R.
Then the empirical quantile function F−1

n satisfies a LDP in M2(R) with a good rate function

I1 : M2(R) → R
G−1 → I1(G−1) = K(G,F ) under Condition (i),

I2 : M2(R) → R
G−1 → I2(G−1) = supδ>0 lim infT→∞ inf‖H−1−G−1‖2<δ K(H,FT ) under Condition (ii),

where FT is the distribution function of the truncated r. v.’s

XT
i = −T1Xi<−T +Xi1|Xi|≤T + T1Xi>T .

The proof of this theorem can be found in Subsection 2.4.

Remark 2.2 Under Condition 2.1, the restriction to M2(R) is not restrictive at all. Indeed, Condition (2.1) implies
that if a probability measure has finite Kullback information with respect to F , then it has a finite second moment.
This claim is true even for a weaker hypothesis than (2.1): suppose that there exists t > 0 such that

E
(
etX2

1

)
< +∞. (2.2)

Let G be such that K(G,F ) <∞, then G−1 ∈M2(R). Indeed: recall the following duality inequality

ab ≤ a log a+ eb for a, b > 0.

Apply this to the likelihood a(x) = dG
dF (x) and b(x) = tx2 with t such that E

(
etX2

1

)
< ∞. By an integration with

respect to dF , it follows that
∫
x2dG(x) <∞.

The last theorem allows to obtain by contraction a LDP for L-statistics with coefficients of type an,i = a(i/n)/n
(see Corollary 2.4 below). Assume that the support of F is included in R+. We now state a functional LDP for the
following random measure on [0, 1]:

νn =
1
n

n∑
i=1

δ i
n
X(i). (2.3)
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Here, δi/n denotes the Dirac measure at i
n . The measure νn gives weight 1

nX(i) to the point i
n . It is seen as an element

of P+([0, 1]) which is the set of all positive measures on [0, 1] with the weak topology. As in Araujo and Giné [1], we
define the Lipschitz Bounded metric that metrizes this topology:

dLB(µ, ν) = sup
f∈FLB

∣∣∣∣∣
∫

[0,1]

fdν −
∫

[0,1]

fdµ

∣∣∣∣∣ ,
where FLB is the class of Lipschitz continuous functions f : [0, 1] → R, with Lipschitz constant at most 1 and
uniform bound 1.

The following analogue of Theorem 2.1 holds for the random measure νn.

Theorem 2.3 We assume that the support of F is included in R+ and that one of the following conditions holds:
(i) (2.1) is satisfied.
(ii) The r.v. X2

1 has a Laplace transform defined on R.
Then the random measure νn satisfies a LDP on P+([0, 1]) with good rate function

Ĩ1 : P+(R) → R

P → Ĩ1(P ) =

{
I1(G−1) when P � λ and G−1 is a quantile function s.t. dP

dλ = G−1,

+∞ else,
under Condition (i),

Ĩ2 : P+(R) → R

P → Ĩ2(P ) =

{
I2(G−1) when P � λ and G−1 is a quantile function such that dP

dλ = G−1,

+∞ else,
under Condition (ii).

The proof is postponed to Subsection 2.4.
As a corollary of Theorems 2.1 and 2.3, we now state a LDP for L-statistics under tail conditions.

Corollary 2.4 Let a be some function on (0, 1).

(i) Under Condition (2.1), for a ∈ L2(0, 1) (resp. for a continuous on [0, 1]), the L-statistic
∑n

i=1X(i)

∫ i
n

i−1
n

a(t)dt

(resp. the L-statistic 1
n

∑n
i=1 a

(
i
n

)
X(i)) satisfies a LDP on R with good rate function I0(C).

(ii) If the r.v. X2
1 has a Laplace transform defined on R, for a ∈ L2(0, 1) (resp. for a continuous on [0, 1]), then

the L-statistic
∑n

i=1X(i)

∫ i
n

i−1
n

a(t)dt (resp. the L-statistic 1
n

∑n
i=1 a

(
i
n

)
X(i)) satisfies a LDP on R with good rate

function

I3(C) = inf
G−1 quantile function :

R
aG−1=C

I2(G−1). (2.4)

Proof: It is a direct application of the contraction principle. Let us first suppose that a ∈ L2(0, 1). The map

M2(R) ⊂ L2(0, 1) → R

G−1 7→
∫
aG−1 (2.5)

F−1
n =

n∑
i=1

1( i−1
n , i

n ]X(i) 7→
n∑

i=1

X(i)

∫ i
n

i−1
n

a(t)dt.

is continuous.
Let us now suppose that a is continuous on [0, 1]. The map

P+(R) → R

P 7→
∫
adP

νn =
1
n

n∑
i=1

δi/nX(i) 7→
1
n

n∑
i=1

a(
i

n
)X(i)

is continuous.
2
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2.2 Examples
We first recall the examples presented in the introduction and show how to deal with them.

Example 2.5 The α-trimmed mean.

Let α < 1/2. Consider the following function a defined on [0, 1]:

a(t) =

{
1

1−2α for t ∈ [α, 1− α]
0 else.

Let us denote by Sα
n the α-trimmed mean defined by (1.2) and by Aα

n the L-statistic
∫ 1

0
a(t)F−1

n (t)dt. A straightfor-
ward calculus shows that

Sα
n −Aα

n =

{
1

n−2αnX(αn) when αn is an integer,
0 else.

Therefore, it is easy to show that Sα
n and Aα

n are exponentially equivalent under suitable conditions. The point is that
the ratio by n of the order statistic near the αth quantile is exponentially equivalent to 0. For instance, it is trivial when
the support of F is bounded. Indeed, suppose that it is included in [−M,M ]. For any fixed δ,

P (|Sα
n −Aα

n| ≥ δ) ≤ P
(∣∣X([αn])

∣∣ ≥ δ (n− 2[αn])
)

≤ P (M ≥ δ(n− 2[αn]))
= 0

for n large enough. This proves the exponential equivalence between Sα
n and Aα

n . Therefore, the α-trimmed mean
satisfies the same LDP as Aα

n . The rate function can be calculated with Corollary 2.4.

Example 2.6 Gini’s difference mean.

Notice that this statistic, given in (1.3), can be written as

4n
n− 1

1
n

n∑
i=1

(
i

n
− 1

2
− 1

2n

)
X(i) =

4
n

n∑
i=1

a

(
i

n

)
X(i) +Rn,

where a(t) = t− 1
2 and Rn satisfies, under (2.1),

1
n

logP (|Rn| > δ) → −∞, n→∞,∀δ > 0.

Hence, it is equivalent with a L-statistic in the scope of Corollary 2.4.

Example 2.7 Centered score function a and uniform distribution.

This is a class of examples of L-statistics for which the rate function can be expressed as the result of an optimization
problem. In a particular case, this optimization problem can be solved and the rate function can be calculated with
numerical tools. Suppose that F is the uniform law on [0, 1]. Let a : [0, 1] → Rk be a square integrable function such
that E[a(X1)] = 0. Define

A = (A1, . . . , Ak) : [0, 1] → Rk (2.6)

t 7→
∫ 1

t

a(s)ds. (2.7)

By Corollary 2.4, the L-statistic
∫ 1

0
a(t)F−1

n (t)dt satisfies a LDP with good rate function expressed in terms of Kull-
back information. However, this expression is not explicit. The following theorem presents another formulation for
the rate function expressed as the result of a more classical optimization problem. In some cases the optimization
problem can be solved by numerical computation, which makes it possible to know the rate function (see Example
2.9).
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Figure 2.1 Rate function for a(t) = t− 1
2

Theorem 2.8 Suppose that F is the uniform distribution. The L-statistics
∫ 1

0
a(t)F−1

n (t)dt satisfy a LDP in Rk, with
good rate function

I(C) = 1 + sup
λ∈R,λ̃∈Rk+1

{
λ+ 〈λ̃, C〉+

∫ 1

0

log
(
−λ− 〈λ̃, A(s)〉

)
ds

}
. (2.8)

The theorem is proved in Subsection 2.4. The following example is a particular case of Example 2.7, in which the
rate function is obtained by a numerical calculus.

Example 2.9 a(t) = t− 1
2 .

Some considerations on (2.8) lead to I(C) = +∞ for C /∈ (0, 1
8 ). For C ∈ (0, 1

8 ), in this particularly simple case, it
is possible to calculate the quantity

Int(λ) =
∫ 1

0

1 + log(〈−λ, Ā(s)〉)ds

in terms of elementary functions:

Int(λ) =


−1 + log(−λ1) + 2

√
−8λ1−λ2

λ2
arctan

( √
λ2√

−8λ1−λ2

)
for λ2 > 0, λ1 < −λ2

8 ,

−1 + log(−λ1) +
√

8λ1+λ2
λ2

[
2 log

(
1 +

√
8λ1+λ2

λ2

)
− log

(
8λ1
λ2

)]
for λ2 < 0, λ1 < 0,

+∞ else.

In Figure 2.2, the graph of I(C) has been obtained by numerical maximization with AMPL. We can check that the
minimum of the rate function is attained at C = 1

12 =
∫
a(t)F−1(t)dt.
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2.3 Towards a LDP for normalized L-statistics
In this section, we derive a LDP for the standardized empirical quantile function. The aim is to treat some normalized
L-statistics, under Condition (2.1). An example is D’Agostino’s goodness of fit statistic (see D’Agostino [3]), defined
as

D =
∑n

i=1(i− (n+ 1)2−1)X(i)

n2Sn
. (2.9)

Theorem 2.10 Suppose that Condition (2.1) is fulfilled and that the underlying law of the sample has no atoms. Then
the normalized empirical quantile function

F−1,N
n =

n∑
i=1

1( i−1
n

i
n ]

X(i) − X̄√
1
n

∑n
i=1(Xi − X̄)2

satisfies a LDP in M2(R) with good rate function

I5(G−1) =

{
infµ∈R,σ>0K

(
G
(

.−µ
σ

)
, F
)

when G has mean 0 and standard deviation 1,
+∞ else.

Proof: The proof follows the arguments for Theorem 2.1; the only additional work is to take into account the normal-
ization procedure, as follows:

No : M2(R) → L2(0, 1)

G−1 7→
G−1 −

∫
G−1(∫ (

G−1 −
∫
G−1

)2) 1
2
, (2.10)

which maps F−1
n to F−1,N

n .
This map (2.10) is continuous for the Wasserstein distance at every quantile function G−1 corresponding to a

non-zero variance r.v.. Indeed, by the Cauchy-Schwarz inequality, the maps G−1 7→
∫
G−1 and G−1 7→

∫ (
G−1

)2
are continuous in L2(0, 1), so the map (2.10) is continuous as a composition of continuous maps, at quantile functions
with non-zero variance.

We have supposed that the Xi have a continuous distribution. This allows to prove the continuity of the normal-
ization map on a sufficiently large subset of quantile functions. Indeed, the continuity of F implies that any random
variable which is absolutely continuous with respect to Xi has also a continuous distribution. In particular, the vari-
ance is positive. Hence, the normalization map No is continuous at any G−1 such that I1(G−1) < ∞. That permits
applying the contraction principle (Theorem 4.1.2, followed by Remark (c) p127 in Dembo and Zeitouni [5]), to obtain
a LDP for No(F−1

n ). The good rate function is

I5(G−1) = inf{I1(H−1) : No(H−1) = G−1} = inf
µ∈R,σ>0

K

(
G

(
.− µ

σ

)
, F

)
.

2

Corollary 2.11 Suppose that Condition (2.1) is satisfied and let a be some function in L2(0, 1). Then the normalized
L-statistics

AN
n :=

n∑
i=1

(∫ i
n

i−1
n

a(t)dt

)
X(i) − X̄√

1
n

∑n
i=1(Xi − X̄)2

(2.11)

satisfy a LDP with good rate function

I(C) = inf
{G−1∈M2(R):

R
aG−1=C}

inf
µ∈R,σ>0

K

(
G

(
.− µ

σ

)
, F

)
. (2.12)
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Example 2.12 D’Agostino’s test statistic.

Let a be the function defined on [0, 1] by a(t) = t− 1
2 . The coefficients∫ i

n

i−1
n

a(t)dt =
i− (n+ 1)2−1

n2

are exactly the same as in D’Agostino’s test statistics given in (2.9). Moreover, a is centered, therefore the normalized
L-statistics

∫ 1

0
a(t)F−1,N

n (t)dt is equal to expression (2.9). As a consequence, Corollary (2.11) can be applied.

2.4 Proofs
Proof of Theorem 2.1. We first prove Theorem 2.1 under (i). The result can be reformulated as a LDP for the
empirical measure µn = 1

n

∑n
i=1 δXi in P2(R). Indeed, the operation which maps a measure in P2(R) to its quantile

function in M2(R) is a topological isomorphism. Hence, we prove that µn satisfies a LDP in P2(R), with good rate
function

P 7→ J1(P ) = K(G,F ),

where G denotes the distribution function of P ∈ P2(R).
We introduce the subsets of M2(R):

KM =
{
P ∈ P2(R) :

∫
x2ϕ(x)dP ≤M

}
, for M > 0,

where ϕ is given in Condition (2.1). The LDP is based on the following facts.

KM is a compact subset of P2(R). (2.13)

(µn) is exponentially tight in P2(R). (2.14)

(2.13) can be proved as follows: let (Zn) be a sequence of random variables with law PZn ∈ KM . Convergence in
Wasserstein distance means convergence in distribution and convergence of the second moment (see del Barrio et al.
[4], Proposition 3.1, for a summary of some properties of the Wasserstein distance). The hypothesis that PZn

∈ KM

ensures that (Zn) is tight and that (Z2
n) is uniformly integrable, hence we can find a random variable Z and extract a

subsequence (Znk
) such that Znk

d→ Z and E(Z2
nk

) → E(Z2).
The tightness (2.14) of (µn) is proved as follows. For t > 0 such as in (2.1),

P (µn 6∈ KM ) = P

(
1
n

n∑
i=1

Z2
i ϕ(Zi) > M

)

= P

(
n∑

i=1

tZ2
i ϕ(Zi) > tnM

)
≤ e−ntM

(
E
(
etZ2

1ϕ(Z1)
))n

,

by Markov’s exponential inequality. Therefore,

1
n

logP (µn 6∈ KM ) ≤ −tM + logE
(
etZ2

1ϕ(Z1)
)

tends to −∞ as M → +∞, which proves that (µn) is exponentially tight.
Now, we identify the rate function thanks to Sanov’s theorem. The injection

i : (P2(R), Wasserstein distance) 7→ (P(R), weak convergence)

is continuous because the weak topology is weaker than that given by the Wasserstein distance. Suppose that a
subsequence (µnk

) of (µn) satisfies a LDP in P2(R) with good rate function J . J1 is the rate function given by
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Sanov’s theorem for the empirical measure. We now prove that necessarily, J = J1: by the contraction principle,
i(µnk

) satisfies a LDP in P(R) with good rate function

J ′(P ) = inf{J(Q) : i(Q) = P}

=

{
J(P ) if P ∈ P2(R)
+∞ else.

But i(µnk
) = µnk

is already known to satisfy a LDP in P(R), with good rate function J1, by Sanov’s theorem.
Therefore, for P ∈ P2(R), J(P ) = J1(P ).

We can now conclude the existence of a LDP for (µn) in P2(R). Let S be a measurable set in M2(R), we want to
prove that:

− inf
P∈S̊

J1(P ) ≤ lim inf
1
n

logP (µn ∈ S) ≤ lim sup
1
n

logP (µn ∈ S) ≤ − inf
P∈S̄

J1(P ).

We shall prove here only the lower bound, since the argument for the upper bound is similar. Suppose µnk
is such that

lim
k→∞

1
nk

logP (µnk
∈ S) = lim inf

1
n

logP (µn ∈ S).

By Lemma 4.1.23 in Dembo and Zeitouni [5] and the fact that (µn) is exponentially tight, we can extract a subsequence
(µnkm

)m∈N, that satisfies a LDP in P2(R), with good rate function J1. Hence in particular, the following inequality
is satisfied:

− inf
P∈S̊

J1(P ) ≤ lim inf
1
nk

logP (µnk
∈ S) = lim inf

1
n

logP (µn ∈ S).

This proves the lower bound of the LDP for µn in P2(R).
Under (ii), a troncation argument is involved. Let us define the truncated empirical quantile function as

F−1,T
n =

n∑
i=1

1( i−1
n , i

n ]X
T
(i),

where
(
XT

(i)

)n

i=1
are the order statistics associated to the truncated i.i.d. variables

(
XT

i

)n
i=1

. By the part (i) of the

theorem, F−1,T
n satisfies a LDP with good rate function J2(G−1) = K(G,FT ) since the support of F−1,T

n is bounded.
We now prove that it is an exponentially good approximation of F−1

n . That makes is possible to apply Theorem 4.2.16
p131 of Dembo and Zeitouni [5] on exponentially good approximations and conclude. Hence, we want to prove that:
∀ε > 0

lim sup
n→∞

1
n

logP
(
‖F−1

n − F−1,T
n ‖2 ≥ ε

)
→ −∞, T → +∞. (2.15)

Notice that

F−1
n − F−1,T

n =
n∑

i=1

1( i−1
n , i

n ]

(
X(i) −XT

(i)

)
=

n∑
i=1

1( i−1
n , i

n ] [(Xi − T ) 1Xi>T + (Xi + T ) 1Xi<−T ]

The square of the L2-norm of this variable is

1
n

n∑
i=1

[
(Xi − T )2 1Xi>T + (Xi + T )2 1Xi<−T

]
,

which is bounded by
2
n

n∑
i=1

X2
i 1X2

i >T 2 .
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So, we have the following inequalities for all positive t, by Markov’s exponential inequality:

1
n

logP
(
‖F−1

n − F−1,T
n ‖2 ≥ ε

)
≤ 1
n

logP

(
2
n

n∑
i=1

X2
i 1X2

i >T 2 > ε2

)

≤ −ε
2t

2
+ logE

(
e
tX2

i 1
X2

i
>T2
)

But E
(
e
tX2

i 1
X2

i
>T2
)

= E
(
etX2

i 1X2
i >T 2

)
+P

(
X2

i ≤ T 2
)
→ 1, T →∞ by Lebesgue’s dominated convergence

theorem.
So for all positive t,

lim sup
T→∞

lim sup
n→∞

1
n

logP
(
‖F−1

n − F−1,T
n ‖2 ≥ ε

)
≤ −ε

2t

2
.

Hence (2.15) is satisfied, which proves that the exponential approximation of F−1
n by F−1,T

n holds.

�

Proof of Theorem 2.3. To begin with, we suppose that (i) is satisfied. We first introduce the auxiliary measure λn,
which is the measure on [0, 1] having density (with respect to the Lebesgue measure λ on [0, 1]):

dλn

dλ
= F−1

n =
n∑

i=1

X(i)1( i−1
n , i

n ]. (2.16)

Let M2,+(R) denote the subset of M2(R) formed by the positive quantile functions. By Theorem 2.1 and by the
continuity of the application

M2,+(R) → P+([0, 1])

G−1 7→ P with P � λ,
dP

dλ
= G−1.

the measure λn satisfies a LDP on P+(0, 1) with good rate function Ĩ1. The LDP for νn can be deduced from the
fact that νn and λn are exponentially equivalent. This holds under weaker hypothesis, which we state in the following
lemma.

Lemma 2.13 Suppose that F has (non necessarily bounded) support in R+ and that its Laplace transform is defined
for some t > 0. Then the measures νn and λn, defined in (2.3) and (2.16) respectively, are exponentially equivalent.

Proof: We will use the Lipschitz bounded metric. Let δ be some positive number. Let a be some continuous function
on [0, 1] with uniform bound and Lipschitz constant bounded by 1.

|νn(a)− λn(a)| =

∣∣∣∣∣ 1n
n∑

i=1

X(i)a

(
i

n

)
−

n∑
i=1

X(i)

∫ i
n

i−1
n

a(t)dt

∣∣∣∣∣
≤

n∑
i=1

X(i)

∫ i
n

i−1
n

∣∣∣∣a( in
)
− a(t)

∣∣∣∣ dt
≤ 1
n2

n∑
i=1

Xi, (2.17)

where the inequality (2.17) uses the Lipschitz condition on a. Hence,

1
n

logP (dLB(νn, λn) > δ) ≤ 1
n

logP

(
1
n2

n∑
i=1

X(i) > δ

)

≤ 1
n

log
(
e−n2tδ

(
etXi

)n)
(2.18)

= −ntδ + logψ(t) → −∞ as n→∞,
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where (2.18) holds for any t > 0 such that ψ(t) = E(etXi) <∞, by Markov’s exponential inequality. 2

Under Condition (ii), a truncation argument as in Theorem 2.1 yields the conclusion. The point is now that the
truncated measure

νT
n =

1
n

n∑
i=1

δ i
n
XT

(i)

is an exponentially good approximation of νn for the topology of the bounded Lipschitz metric. Let a be some
continuous function on [0, 1] with uniform bound and Lipschitz constant bounded by 1.

∣∣νn(a)− νT
n (a)

∣∣ =

∣∣∣∣∣ 1n
n∑

i=1

a(
i

n
)(XT

(i) −X(i))

∣∣∣∣∣
=

1
n

n∑
i=1

(Xi − T )1Xi>T + (−T −Xi)1Xi<−T

≤ 2
n

n∑
i=1

|Xi|1|Xi|>T

So it is sufficient to prove that for all ε > 0,

lim
T→∞

lim
n→∞

1
n

logP (
1
n

n∑
i=1

|Xi|1|Xi|>T > ε) = −∞.

But by Markov’s exponential inequality and the independence of the Xi, for all positive t,

1
n

logP (
1
n

n∑
i=1

|Xi|1|Xi|>T > ε) =
1
n

logP (et
Pn

i=1 |Xi|1|Xi|>T > entε)

≤ −tε+ log
(
E
(
et|Xi|1|Xi|>T

))
.

We conclude as in Theorem 2.1.

�

Proof of Theorem 2.8. The theorem is proved using some convex analysis tools. Namely, we transform the rate
function I0 by some duality arguments due to Borwein and Lewis [2].

Let G be a distribution function such that G� F . This implies that G and G−1 are derivable almost everywhere.
Let U be a random variable with uniform law on [0, 1]. Recall that G−1(U) has distribution function G. Hence,

K(G,F ) =
∫ 1

0

log
G′(G−1(t))
F ′(G−1(t))

1G′(G−1(t)) 6=0dt (2.19)

=
∫ 1

0

(
− log(G−1)′(t)1G′(G−1(t)) 6=0

)
dt.

Here, we have used that (G−1)′(t) is defined as soon as G′(G−1(t)) 6= 0 and that F ′(x) = 1. At points t such that
G′(G−1(t)) 6= 0, (G−1)′(t) is the derivative of G−1 in the usual meaning. Such points t are of Lebesgue measure 1
in (0, 1). So, we have obtained:

K(G,F ) = −E log
(
G−1

)′
(U),

with the convention log u = −∞, u ≤ 0. Therefore K(G,F ) can be expressed as the following functional of
x = G−1:

K(x) =

{
−
∫ 1

0
log x′(t)dt for x : (0, 1] → [0, 1] strictly increasing and derivable a.e.

+∞ else,
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So the problem to be solved to compute the rate function I is: minimize K(x) under the k-dimensional constraint∫ 1

0
a(t)x(t)dt = C. Remark that since a is centered, for a given x and any constant c ≥ 0 such that x(1) + c ≤ 1,

we have K(x) = K(x + c), so that
∫ 1

0
a(t)x(t)dt =

∫ 1

0
a(t)(x(t) + c)dt. Moreover, if x is such that x(1) > 1, then

K(x) = +∞. Hence, we can add the constraint x(1) = 1. Now let y = x′, then x(t) = 1−
∫ 1

t
y(s)ds. Using the fact

that a is centered, an integration by parts and a Fubini argument, the constraint may be rewritten as:∫ 1

0

a(t)x(t)dt =
∫ 1

0

A(s)y(s)ds,

so the new problem (P̃ ) is to minimize

K̃(y) = −
∫ 1

0

log y(t)dt

under the constraint
∫ 1

0
A(s)y(s)ds = C, with 0 ≤ 1 − x(0) =

∫ 1

0
y(t)dt ≤ 1. The inequality 0 ≤

∫ 1

0
y(t)dt ≤ 1

leads to the introduction of one more constraint, and to a new series of problems
(Pα): minimize K̃(y) under ∫ 1

0

A(s)y(s)ds = C,

∫ 1

0

y(t)dt = α,

for 0 ≤ α ≤ 1. The value of the infimum for problem (P̃ ), denoted by V al(P̃ ), is the infimum of the values of the
infimum for (Pα), for α varying in [0, 1]. Denote, for each α, the value of the infimum in problem (Pα) by V al(Pα).
The solution can be found by duality arguments such as in Borwein and Lewis [2]. First, we prove that for each α, the
dual problem (P ∗α), with supremum value denoted by V al(P ∗α), is

sup
λ∈Rk+1

〈λ, C̄α〉+
∫ 1

0

1 + log(〈−λ, Ā(s)〉)ds,

where Ā and C̄α are defined in the following way: for A = (A1, . . . , Ak), Ā = (1, A1, . . . Ak) : [0, 1] → Rk+1. For
C = (C1, . . . , Ck) ∈ Rk and α ∈ [0, 1], define C̄α = (α,C1, . . . , Ck).

This can be proved as follows. The problem (Pα) is to minimize

K̃(y) = −
∫ 1

0

log y(t)dt under

∫ 1

0

Ā(s)y(s)ds = C̄α.

We check the hypothesis of Theorem 3.4 of Borwein and Lewis [2]:

Φ : u 7→

{
− log u , u > 0
+∞, u ≤ 0

satisfies p = limu→−∞
Φ(u)

u = −∞, q = limu→+∞
Φ(u)

u = 0, and its dual function is given by Φ∗ : s 7→ −1 −
log(−s). From this follows the formulation of the dual problem for given α.

Now, we prove that V al(Pα) = V al(P ∗α). Φ is not affine and there exists λ ∈ Rk+1 such that 〈λ, Ā(s)〉 ∈ (p, q)
∀s ∈ [0, 1]: just take λ = (−1, 0, . . . , 0). Hence the Dual Constraint Qualification is satisfied. The Primal Constraint
Qualification is supposed to be satisfied, i.e. we suppose that there exists ŷ ∈ L1([0, 1]) such that ŷ(s) ∈ R∗

+ a.s.
and ŷ satisfies

∫ 1

0
Ā(s)ŷ(s)ds = C̄α. When α does not satisfy this hypothesis, V al(Pα) = +∞ so the problem

does not have to be solved for this value of α. The conclusion of the theorem of Borwein and Lewis [2] is that
V al(Pα) = V al(P ∗α).
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Recall that V al(P̃ ) = infα∈[0,1] V al(Pα). Now, we prove that infα∈[0,1] V al(Pα) = infα∈[0,1] V al(P ∗α) =
V alP ∗1 . We use a minimax theorem for convex functions (Fan, 1953, exposed in Roberts and Varberg [13] p138). The
application of this theorem gives:

V al(P̃ ) = inf
α∈[0,1]

sup
λ∈Rk+1

{
〈λ, C̄α〉+

∫ 1

0

1 + log(−〈λ, Ā(s)〉)ds
}

= sup
λ∈Rk+1

inf
α∈[0,1]

{
〈λ, C̄α〉+

∫ 1

0

1 + log(−〈λ, Ā(s)〉)ds
}
.

A discussion of the sign of the first coordinate λ1 of λ concludes the proof, as follows.
If λ1 > 0, infα∈[0,1]

{
〈λ, C̄α〉+

∫ 1

0
1 + log(−〈λ, Ā(s)〉)ds

}
= −∞ because A is continuous and takes value 0

at 0, so
−〈λ, Ā(s)〉 = −λ1 − 〈λ2,k+1, A(s)〉 ≤ 0

in a neighborhood of 0 and the log is not defined. Here we have used the notation λ2,k+1 = (λ2, . . . , λk+1).
If λ1 = 0, the function to minimize in α does not depend on α and is

〈λ2,k+1, C〉+ 1 +
∫ 1

0

log (−〈λ2,k+1, A(s)〉) ds.

If λ1 < 0,

inf
α∈[0,1]

{
〈λ, C̄α〉+

∫ 1

0

1 + log(−〈λ, Ā(s)〉)ds
}

= λ1 + 〈λ2,k+1, C〉+ 1 +
∫ 1

0

log(−λ1 − 〈λ2,k+1, A(s)〉)ds.

But for any continuous function f on Rk+1,

sup
λ∈Rk+1,λ1<0

f(λ) ≥ sup
λ∈Rk+1,λ1=0

f(λ).

Moreover, when λ1 > 0, ∫ 1

0

log(−λ1 − 〈λ2,k+1, A(s)〉)ds = −∞,

as we have already seen. Hence:

V al(P̃ ) = sup
λ1∈R,λ2,k+1∈Rk

{
λ1 + 〈λ2,k+1, C〉+ 1 +

∫ 1

0

log(−λ1 − 〈λ2,k+1, A(s)〉)ds
}

= sup
λ∈Rk+1

{
〈λ, C̄1〉+ 1 +

∫ 1

0

log(−〈λ, Ā(s)〉)ds
}
.

�

3 LDP for L-statistics with exponential underlying law
We assume here that F is the exponential distribution with parameter 1. The tails of this distribution are quite heavy, so
that neither the tail condition (2.1) nore the hypothesis of existence of the Laplace transform of X2

1 at some point are
satisfied. So the method employed in Section 2 does not provide any LDP result for the empirical quantile function.
Let us now have a look at the contracted LDP obtained in Groeneboom and Shorack [9]. The result is part of a LDP
for L-statistics

∫
a(t)F−1

n (t)dt and one key condition is that∫ 1

1/2

∣∣a(t)F−1
(
1− e−

c
1−t
)∣∣ dt <∞,

for some c. For positive a, using that F−1(t) = − log(1− t), the condition can be written as:∫ 1

1/2

c
a(t)
1− t

dt <∞. (3.1)
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Hence, we see that the function a has to tend to 0 quite fastly near 1. The result we present in Theorem 3.3 leads
to a LDP without asking for this condition. It gives a functional LDP for the measure νn defined in (2.3), which is
at an upper level than the result of Groeneboom and Shorack. By the contraction principle, it covers all statistics
1
n

∑n
i=1 a(i/n)X(i) when a is continuous on (0, 1). In Remark 3.4 below, we discuss the relationship between these

two results.
Let us recall some topological results. We deal with the measure

νn =
1
n

n∑
i=1

X(i)δ i
n
,

which lies in the set P+([0, 1]) of all positive bounded measures on [0, 1]. As in Theorem 2.3, P+([0, 1]) is endowed
with the weak topology. It is a closed subset of P([0, 1]) which denotes the set of all finite regular R-valued measures
on [0, 1]. This is the dual space of C([0, 1]) for the uniform topology. We employ the abstract Gärtner-Ellis Theorem.
The tool we use is a duality argument. For a in C([0, 1]), let

Λ(a) =

−
∫ 1

0
log
[
1−

R 1
1−t

a(u)du

t

]
dt whenever the integral is defined

+∞ else
(3.2)

Denote by

Λ∗(µ) = sup
a∈C([0,1])

[∫ 1

0

a(t)dµ(t)− Λ(a)
]

(3.3)

the dual function of Λ, which may take infinite values.
The following theorem gives an explicit expression for Λ∗.

Theorem 3.1 Let µ ∈ P([0, 1]). Suppose that µ admits the decomposition µ = lλ + µ({1})δ1, where l(u) =∫ u

0
dm(s) and the Lebesgue decomposition of m is m = αλ + χ. Moreover, suppose that the singular measure

−tdχ(1− t) + µ({1})δ0 is positive. Then

Λ∗(µ) =
∫ 1

0

(tα(1− t)− logα(1− t)) dt−
∫ 1

0

tdχ(1− t) + µ({1}).

Else, Λ∗(µ) = +∞.

In order to understand Λ∗, let us consider a simple case: µ = lλ, when the density l is derivable, with derivated α.
Hence:

µ([0, t]) =
∫ t

0

l(u)du,

l(u) =
∫ u

0

dm(s) =
∫ u

0

α(s)ds.

Since all the singular measures of the decomposition are equal to zero, the rate function, in this case, has the expression:

Λ∗(µ) =
∫ 1

0

(tα(1− t)− logα(1− t)) dt.

Proof: Remark that Λ can be decomposed in the following way: Λ = Γ ◦ T , where

T : C([0, 1]) → C([0, 1])

a 7→ Ta : t 7→ 1
t

∫ 1

1−t

a(u)du,

Γ : C([0, 1]) → R

b 7→

{
−
∫ 1

0
log (1− b(t)) dt if the integral is defined

+∞ else.
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Here, Ta(0) is defined by continuity as a(1). T is a linear, continuous function on C([0, 1]) for the uniform topology
and hence has a closed graph. Γ is a proper convex function on C([0, 1]). Therefore, Theorem 19 of Rockafellar
[15], can be applied. Condition (a) in Rockafellar [15] is satisfied: ∃a ∈ dom T such that Γ is bounded above on a
neighborhood of Ta: just take a = 0. The conclusion is

Λ∗(µ) = min{Γ∗(ν) : ν ∈ dom T ∗, T ∗ν = µ}

for µ ∈ M([0, 1]), where Γ∗ : M([0, 1]) → R is the dual function of Γ, and T ∗ : M([0, 1]) → M([0, 1]) is the dual
function of T .

T ∗ can be calculated via an application of Fubini’s theorem. It is defined by: 〈Ta, ν〉 = 〈a, T ∗ν〉 for ν ∈M([0, 1])
and a ∈ C([0, 1]). We have∫ 1

0

∫ 1

1−t
a(u)du
t

dν(t) =
∫

(0,1]

∫
[1−t,1)

a(u)du

t
dν(t) + a(1)ν({0})

=
∫

[0,1)

(∫
[1−u,1]

1
t
dν(t)

)
a(u)du+ a(1)ν({0}),

by Fubini’s theorem. Hence T ∗ν is the measure with Lebesgue decomposition

T ∗ν =
∫ 1

1−·

1
t
dν(t)λ+ ν({0})δ1.

Now for µ = lλ+ µ({1})δ1, let us seek for ν such that T ∗ν = µ. By equality between the two singular parts:

ν({0}) = µ({1}).

The densities with respect to λ of the absolutely continuous parts are equal λ-a.s., so for λ-a.e. u:∫ 1

1−u

1
t
dν(t) = l(u). (3.4)

This implies that l has bounded variation and can be written

l(u) =
∫ u

0

dm(s) with m = αλ+ χ.

So l(u) =
∫ 1

1−u
α(1− t)dt−

∫ 1

1−u
dχ(1− t). By equation (3.4), ν satisfies for λ-a.e. t 6= 0:

1
t
dν(t) = α(1− t)dt− dχ(1− t).

Hence dν(t) = tα(1− t)dt− tdχ(1− t) + µ({1})dδ0(t).
The last step is the calculus of Γ∗(ν). An application of the results of Theorem 5 of Rockafellar [14] yields the

following auxilliary lemma:

Lemma 3.2 For b ∈ C([0, 1]), let

Γ(b) =

{
−
∫ 1

0
log(1− b(t))dt if the integral is defined

+∞ else.

Let ν be a signed measure on [0, 1] and ν = βλ+ ψ its Lebesgue decomposition. Then

Γ∗(ν) := sup
b∈C([0,1])

{∫ 1

0

b(t)dν(t)− Γ(b)
}

is given by the expression:

Γ∗(ν) =

{∫ 1

0
(β(t)− 1− log β(t)) dt+ ψ ([0, 1]) if ψ is nonnegative,

+∞ else,

with the convention − log t = +∞ if t ≤ 0.
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So in our case,

Λ∗(µ) = Γ∗(ν) =
∫ 1

0

(tα(1− t)− 1− log (tα(1− t))) dt−
∫ 1

0

tdχ(1− t) + µ({1}),

which gives the expression announced in Theorem 3.1. 2

We now state the main result of this section.

Theorem 3.3 νn satisfies a LDP with good rate function Λ∗.

Before the proof, let us compare the LDP for L-statistics induced by Theorem 1.1 and Theorem 3.3.

Remark 3.4 Relationship between Theorem 1.1 and by Theorem 3.3. With both results, we can obtain LDP-type
results for L-statistics

∫ 1

0
a(t)F−1

n (t)dt for suitable a. Indeed, although we have formulated Theorem 3.3 for νn, the
exponential equivalence given in Lemma 2.13 allows to state the LDP for F−1

n . Let a be some function satisfying both
the decay condition of Theorem 1.1 and the continuity condition of Theorem 3.3. In order to compare the two results,
let us consider the following. Let r ∈ R. By Theorem 1.1, we have

lim
1
n

logP
(∫ 1

0

a(t)F−1
n (t)dt ≤ r

)
= − inf

{
K(G,F ) :

∫
aG−1 ≤ r

}
.

Similarly, Theorem 3.3 implies that:

− inf
{

Λ∗(µ) :
∫
adµ < r

}
≤ lim inf

1
n

logP
(∫ 1

0

a(t)F−1
n (t)dt ≤ r

)
≤ lim sup

1
n

logP
(∫ 1

0

a(t)F−1
n (t)dt ≤ r

)
≤ − inf

{
Λ∗(µ) :

∫
adµ ≤ r

}
.

We can observe that Theorem 1.1 is slightly more precise since it gives a limit instead of the limsup and liminf. But
we shall see that this contracted LDP theorem is less informative on the underlying LDP on νn. Let us make the link
between the rate functions. Let us suppose that G−1 is such that

∫
aG−1 ≤ r and K(G,F ) < ∞. We can define a

measure µ by dµ = G−1dλ. Then, obviously,
∫
adµ ≤ r. Moreover, Λ∗(µ) = K(G,F ). Indeed, we can compute

K(G,F ) as in (2.19):

K(G,F ) =
∫ 1

0

log
G′(G−1(t))
F ′(G−1(t))

1G′(G−1(t)) 6=0dt

=
∫ 1

0

(
− log(G−1)′(t)1G′(G−1(t)) 6=0 +G−1(t)

)
dt. (3.5)

Here, we have used F ′(x) = e−x. Let us denote, as in Theorem 3.1, l = G−1. Let m be such that l(u) =
∫ u

0
dm(s)

with m = αλ + χ the Lebesgue decomposition of m. Again, at points t such that G′(G−1(t)) 6= 0, (G−1)′(t) is the
derivative of G−1 in the usual meaning and is equal to α(t). Such points t are of Lebesgue measure 1 in (0, 1). (3.5)
becomes:

K(G,F ) =
∫ 1

0

(− logα(t) + l(t)) dt

= −
∫ 1

0

logα(t)dt+
∫ 1

0

∫ t

0

dm(s)dt

= −
∫ 1

0

logα(t)dt+
∫ 1

0

∫ 1

s

dtdm(s)

= −
∫ 1

0

logα(t)dt+
∫ 1

0

(1− s)α(s)ds+
∫ 1

0

(1− s)dχ(s)

= −
∫ 1

0

logα(1− t)dt+
∫ 1

0

sα(1− s)ds+
∫ 1

0

sdχ(1− s).

= Λ∗(µ). (3.6)
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This shows how the contraction step µ 7→
∫
adµ for functions a decaying at 1 causes a loss of information on the

underlying LDP for the measure νn. The measures µ which have to be considered are only the particular measures
dµ = G−1dλ for some quantile function G−1. The decay of a at 1 makes the possible weights of measures µ at 1
disappear from the rate function.

Proof: The proof follows the same ideas as in Gamboa et al. [6]. We will use an analogue of the techniques developed
in Lemmas 7 and 8 therein to prove the lower bound. The abstract Gärtner-Ellis theorem (Theorem 4.5.3 of Dembo
and Zeitouni [5]) provides the upper bound for compact sets. Exponential tension is obtained via Cramer’s LDP for
sums of i.i.d. real-valued random variables, which gives the upper bound for closed sets. Next, the lower bound is
derived from Baldi’s theorem (Theorem 4.5.20 of Dembo and Zeitouni [5]) thanks to a study of the exposed points.

Let us first check the hypothesis of the abstract Gärtner-Ellis theorem. For any function a in C([0, 1]), define

Λn(a) = logE(exp[νn(a)]). (3.7)

We have to study the possible limit of 1
nΛn(na), which we will call Λ(a). The calculations are possible thanks to

a suitable representation of the uniform order statistics with normalized sums of i.i.d. exponential random variables.
This is a very particular and interesting case. Unfortunately, this method seems difficult to generalize.

The possible limits for 1
nΛn(a) are studied in the following lemma:

Lemma 3.5 (i) Suppose that for all t in (0, 1],
∫ 1

1−t
a(u)du < t and that a(1) < 1. Then the limit of 1

nΛn(a) is finite
and coincides with Λ(a).
(ii) Suppose there exists t in (0, 1] such that

∫ 1

1−t
a(u)du > t or a(1) > 1. Then the limit of 1

nΛn(a) is infinite and
coincides with Λ(a).

Proof: We make use of a representation of the quantiles of the uniform distribution, as follows: let ξ1, . . . , ξn+1 be
an i.i.d. sample of exponential law with parameter 1. Denote by U(i) the i-th uniform order statistics from a sample of
size n. The following equality holds in distribution:

(
U(i)

)n
i=1

=d

(
ξ1 + · · ·+ ξi
ξ1 + · · ·+ ξn+1

)n

i=1

.

Let F be the distribution function of the exponential law with parameter 1, namely F−1(t) = − log(1 − t) for t
in [0, 1[. Then

(
X(i)

)n
i=1

=
(
F−1(U(i))

)n
i=1

has the distribution of the order statistics derived from an exponential
sample with parameter 1, so that we have the following distributional equality: jointly for i = 1, . . . , n

X(i) = − log
(

1− ξ1 + · · ·+ ξi
ξ1 + · · ·+ ξn+1

)
= − log

ξi+1 + · · ·+ ξn+1

ξ1 + · · ·+ ξn+1
.

Therefore,

eΛn(na) = E
(
e

Pn
i=1 a( i

n )X(i)

)
=
∫

Rn+1
+

(
x2 + · · ·+ xn+1

x1 + · · ·+ xn+1

)−a( 1
n )

. . .

(
xn+1

x1 + · · ·+ xn+1

)−a( n
n )

e−x1−···−xn+1dx1. . .dxn+1

Let us make the triangular change of variables:
u1 = xn+1

u2 = xn+1 + xn

. . .
uk = xn+1 + · · ·+ xn+2−k

. . .
un+1 = xn+1 + · · ·+ x1.
To simplify the notations, define

κk = −a
(
n− k + 1

n

)
(3.8)
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and Tk = {(uk, . . . , un+1) ∈ Rn−k : 0 < uk < · · · < un+1}, for 1 ≤ k ≤ n. So

eΛn(na) =
∫

T1

(
u1

un+1

)κ1

. . .

(
un

un+1

)κn

e−un+1du1 . . . dun+1

Let 1 ≤ k ≤ n such that for every 1 ≤ j ≤ k,

κ1 + · · ·+ κj + j − 1 > −1. (3.9)

Then by induction,

eΛn(na) =
1

κ1 + 1
. . .

1
κ1 + · · ·+ κk + k

∫
Tk+1

uκ1+···+κk+k
k+1 u

κk+1
k+1 . . .u

κn
n u−κ1−···−κn

n+1 e−un+1duk+1 . . . dun+1.

Therefore if (3.9) holds for k = n, the induction yields

eΛn(na) =
1

κ1 + 1
. . .

1
κ1 + · · ·+ κn + n

∫
R+

uκ1+···+κn+n
n+1 u−κ1−···−κn

n+1 e−un+1dun+1

= Γ(n+ 1)
n∏

j=1

1
κ1 + · · ·+ κj + j

=
n∏

j=1

j

κ1 + · · ·+ κj + j
.

Now returning to expression (3.8):

1
n

Λn (na) = − 1
n

n∑
j=1

log

(
1− 1

j

j∑
l=1

a

(
n− l + 1

n

))
.

Else now suppose that for some k ≤ n, κ1 + · · ·+ κk + k − 1 ≤ −1. Then the k-th integral∫
o<uk<uk+1

uκ1+···+κk+k−1
k duk

is infinite and in that case, eΛn(na) = +∞. Now let us relate the satisfaction of (3.9) for k = n for large n, with the
following two possibilities.

In the situation described in (i): for large n, (3.9) is satisfied for k = n, and the limit of 1
nΛn(na) is finite and

coincides with Λ(a).
In the situation described in (ii): for large n there exists 1 ≤ k ≤ n such that (3.9) is not satisfied and the limit of

1
nΛn(na) is infinite and coincides with Λ(a).

The last possible situation is: a(1) ≤ 1, and for all t in [0, 1],
∫ 1

1−t
a(u)du ≤ t, and moreover the equality holds

for at least one t or a(1) = 1. In that case we do not know the limit but it does not matter.
To prove this, we need two technical lemmas:

Lemma 3.6 Let b be a continuous function on [0, 1] and bjn be some coefficients such that

lim
n→∞

max
j≤n

∣∣∣∣bjn − b

(
j

n

)∣∣∣∣ = 0. (3.10)

a) Suppose that 1− b(t) > 0 for all t. Then for large n, bjn < 1, 1 ≤ j ≤ n and

lim
n→+∞

1
n

n∑
j=1

log(1− bjn) =
∫ 1

0

log(1− b(t))dt

b) Suppose that there is some y such that: 1− b(t) < 0. Then for large n, bjn > 1 for some j ≤ n.
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Lemma 3.7 If a : [0, 1] → R is a continuous function and b is the continuous function given by

b(t) =

{
1
t

∫ t

0
a(1− u)du for 0 < t ≤ 1

a(1) for t = 0,

then the coefficients bjn = 1
j

∑j
l=1 a(

n−l+1
n ) satisfy (3.10) of Lemma 3.6.

Now observe that condition (3.9) is just

1
j

j∑
l=1

a

(
n− l + 1

n

)
< 1,∀1 ≤ j ≤ k

so that combining the two lemmas we treat the situations (i) and (ii).
2

Upper bound. We get the upper bound with Λ
∗

as rate function, using Theorem 4.5.3 b) of Dembo and Zeitouni [5]
and the exponential tightness of (νn) which is proved as follows: for a a continuous function on [0, 1] with supremum
norm bounded by 1, ∣∣∣∣∫ 1

0

a(t)dνn(t)
∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

i=1

X(i)a

(
i

n

)∣∣∣∣∣ ≤ 1
n

n∑
i=1

Xi.

Denote by ψ∗(t) = t−1− log t the Cramer transform of the exponential law with parameter 1. Hence for any positive
α

lim sup
1
n

logP

({
sup

a∈C([0,1]),‖a‖∞=1

∣∣∣∣∫ 1

0

a(t)dνn(t)
∣∣∣∣ > α

})
≤ lim sup

1
n

logP

({
1
n

n∑
i=1

Xi > α

})
≤ −ψ∗(α)

Therefore the limit is −∞ when α→∞ and this proves the exponential tension of νn.
Lower bound. In order to use the same ideas as in Gamboa et al. [6], we find exposed points of Λ∗ and prove that

they are dense in M([0, 1]). This is done in Lemmas 3.8 and 3.9 below.

Lemma 3.8 Let a ∈ C([0, 1]) be a function satisfying that for every t > 0,
∫ 1

1−t
a(u)du < t and set

α(t) =
1

1− t−
∫ 1

t
a(u)du

.

Then the measure µ� λ defined by its density s 7→
∫ s

0
α(t)dt is an exposed point of Λ∗ with exposing hyperplane a.

Proof: Let µ′ 6= µ be a measure such that Λ∗(µ′) < +∞. By Theorem 3.1, µ′ = lλ + µ′({1})δ1 and l(s) =∫ s

0
β(t)dt+ dχ(t). Moreover, the measure −tdχ(1− t) + µ′({1})δ0 is nonnegative. We have to prove the inequality:

Λ∗(µ)− Λ∗(µ′) < 〈a, µ− µ′〉.

Let γ be the strictly convex function defined for x > 0 by

γ(x) = x− 1− log x.

Because of the strict convexity, for x > 0, y > 0 such that x 6= y,

γ(x)− γ(y) < (x− y)γ′(x).

Use this to bound

Λ∗(µ)− Λ∗(µ′) =
∫ 1

0

(γ (tα(1− t))− γ (tβ(1− t))) dt+
∫ 1

0

tdχ(1− t)− µ′ ({1})

<

∫ 1

0

(
(α(1− t)− β(1− t))

∫ 1

1−t

a(u)du
)
dt+

∫ 1

0

tdχ(1− t)− µ′ ({1}) .
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An integration by parts leads to:∫ 1

0

(
(α(1− t)− β(1− t))

∫ 1

1−t

a(u)du
)
dt =

∫ 1

0

(∫ t

0

(α(u)− β(u)) du
)
a(t)dt

= 〈a, µ〉 −
∫ 1

0

(∫ t

0

β(u)du
)
a(t)dt (3.11)

By the hypothesis on a: the function defined by t 7→
R 1
1−t

a(u)du

t on (0, 1] and continuously extended by a(1) at t = 0
is always less than or equal to 1 on [0, 1]. So by nonnegativity of the measure −tdχ(1− t) + µ({1})δ0,

−
∫ 1

0

(∫ 1

1−t

a(u)du
)
dχ(1− t) + µ′({1})a(1) ≤ −

∫ 1

0

tdχ(1− t) + µ′({1}). (3.12)

Combining (3.11) and (3.12), another integration by parts leads to:

Λ∗(µ)− Λ∗(µ′) < 〈a, µ〉 −
∫ 1

0

(∫ t

0

β(u)du
)
a(t)dt−

∫ 1

0

(∫ t

0

dχ(u)
)
a(t)dt− µ′ ({1}) a(1)

= 〈a, µ〉 − 〈a, µ′〉.

2

The proof of the density of the exposed point concludes the demonstration as in Gamboa et al. [6].

Lemma 3.9 Let µ be in M([0, 1]) such that Λ∗(µ) < +∞. Then there exists a sequence of measures µn which are
exposed points for Λ∗, such that µn converges to µ in M([0, 1]) and limn→+∞ Λ∗(µn) = Λ∗(µ).

Proof: This proof is very similar to the proof of Lemma 8 in Gamboa et al. [6]. The following property of γ will be
very useful:

γ(τ + τ ′) ≤ γ(τ) + τ ′, for τ > 0, τ ′ ≥ 0. (3.13)

To begin with, we prove an additivity property of the set of exposed points owing to another parametrization than in
Lemma 3.8. The application

A → C([0, 1])

a 7→ c := 1− Ta : t 7→ 1− 1
t

∫ 1

1−t

a(u)du

has image C = {c ∈ C([0, 1]) : c > 0 and derivable on (0, 1]}. The exposed point corresponding to c ∈ C is µ with
density (w.r.t. λ) s 7→

∫ 1

1−s
1

tc(t)dt and exposing hyperplane: T−1(1 − c). It is straightforward to prove that if µi,
parametrized by ci ∈ C, i = 1, 2 are two exposed points, then µ1 +µ2 is also an exposed point, parametrized by c1c2

c1+c2
.

Indeed, µ1 + µ2 has density w.r.t. λ:

s 7→
∫ 1

1−s

(
1

tc1(t)
+

1
tc2(t)

)
dt =

∫ 1

1−s

1

t c1(t)c2(t)
c1(t)+c2(t)

dt.

It is easy to see that the function c : t 7→ c1(t)c2(t)
c1(t)+c2(t)

is also in C, so it parametrizes an exposed point.
We now use this additivity property of the exposed points to prove their density in the set of measures µ with

Λ∗(µ) <∞.
Step 1. We find a sequence of functions fM (u) =

∫ 1

1−u
1

tcM (t)dt,M ∈ N with cM ∈ C, such that fMλ → δ1
in M([0, 1]) and hence: the measure with density lM (u) = l(u) + µ({1})fM (u) is an exposed point for Λ∗ by the
additivity property and converges to µ. Moreover, this sequence satisfies: Λ∗(lMλ) → Λ∗(µ).
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A construction of (fM ) can be as follows: cM (u) = 1
uf ′M (1−u) has to be > 0, continuous on [0, 1] and derivable

on (0, 1], so fM will have to be at least twice derivable on [0, 1), increasing and can be chosen in such a way that
f ′M (1− u) ∼ 1

u when u→ 0. We construct a C2([0, 1)) strictly increasing function fM with the pattern:

on [0, 1− 2
M2

− 1
M

] : fM ≤ 1
M
,

on [1− 2
M2

− 1
M
, 1− 1

M2
− 1
M

] :
1
M

≤ fM ≤M − 1,

on [1− 1
M2

− 1
M
, 1− 1

M2
] : M − 1 ≤ fM ≤M,

on [1− 1
M2

, 1) : fM (x) = M
log(1− x)
log(M2)

.

fM approximates δ1, because the principal part is on the third interval. Hence: lMλ = lλ + µ({1})fMλ → µ =
lλ + µ({1})δ1. Let us now prove that Λ∗(lMλ) → Λ∗(µ). Because Λ∗ is lower semicontinuous, lim inf Λ∗(lMλ) ≥
Λ∗(µ). The other inequality is derived as follows:

Λ∗(lMλ) = Λ∗ ((l + µ({1})fM )λ)

=
∫ 1

0

γ(tα(1− t) + tαM (1− t))dt,

where α(1− t) = 1
tc(t) and αM (t) = µ({1})f ′M (t). By inequality (3.13), since for all t, tα(1− t) > 0:

Λ∗(lMλ) ≤
∫ 1

0

(γ(tα(1− t)) + tαM (1− t)) dt.

But, by integration by parts:∫ 1

0

tαM (1− t)dt = µ({1})
∫ 1

0

tf ′M (1− t)dt

= µ({1})
∫ 1

0

fM (1− t)dt− µ({1})fM (0)

because by choice of fM in this construction, limt→0 tfM (1−t) = 0. Notice that 0 ≤ fM (0) ≤ 1
M , so limM→+∞ µ({1})fM (0) =

0. Now as fMλ approximates the measure δ1, the last expression tends to µ({1}). Therefore, the desired inequality is
proved:

lim sup Λ∗(lMλ) ≤
∫ 1

0

γ(tα(1− t))dt+ µ({1}) = Λ∗(µ)

Step 2. Let µ = lλ be such that Λ∗(µ) < +∞, with l(u) =
∫ u

0
dm(s), m = αλ+χ and suppose that the measure

with density s 7→
∫ s

0
α(t)dt is an exposed point of Λ∗ as in Lemma 3.8.

There exists a sequence (cM ) ⊂ C such that cM > 0 and 1
cM
λ tends to the positive measure −tdχ(1− t). Define

αM (1− t) = 1
tcM (t) and µM the measure with density lM with respect to λ, where lM : s 7→

∫ s

0
(α(t) + αM (t)) dt.

Then µM tends to µ: for b ∈ C([0, 1]), we only need to check that∫ 1

0

(∫ t

0

αM (s)ds
)
b(t)dt→

∫ 1

0

∫ t

0

dχ(s)b(t)dt.

But ∫ 1

0

(∫ t

0

αM (s)ds
)
b(t)dt =

∫ 1

0

(∫ 1

1−t

1
scM (s)

ds

)
b(t)dt

=
∫ 1

0

∫ 1

1−s
b(t)dt
s

1
cM (s)

ds (3.14)
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by Fubini’s theorem. This operation is possible because ‖cM‖∞ > 0 and
∫ 1

0

R 1
1−s

|b(t)|dt

s
1

|cM (s)|ds ≤
‖b‖∞
‖cM‖∞ . But

s 7→
R 1
1−s

b(t)dt

s is a continuous function on [0, 1], and 1
cM (s)ds is a measure that tends to −sdχ(1 − s). Hence: the

limit of the right-hand side of (3.14) is:

∫ 1

0

∫ 1

1−s
b(t)dt
s

(−sdχ(1− s)) = −
∫ 1

0

(∫ 1

1−s

b(t)dt
)
dχ(1− s).

Note that as the measure −sdχ(1 − s) does not give mass to {0}, and moreover
∫ 1

1−s
b(t)dt = 0 when s = 0, the

simplification by s is allowed. Lastly, a change of variables 1− s = u and the use of Fubini’s theorem lead to:

−
∫ 1

0

(∫ 1

1−s

b(t)dt
)
dχ(1− s) =

∫ 1

0

(∫ 1

u

b(t)dt
)
dχ(u)

=
∫ 1

0

(∫ t

0

dχ(u)
)
b(t)dt.

We can now prove that Λ∗(µM ) → Λ∗(µ): as Λ∗ is lower semicontinuous, lim inf Λ∗(µM ) ≥ Λ∗(µ). For the
converse, use inequality (3.13):

Λ∗(µM ) =
∫ 1

0

γ (t (α(1− t) + αM (1− t))) dt

≤
∫ 1

0

γ(tα(1− t))dt+
∫ 1

0

tαM (1− t)dt because tα(1− t) > 0.

lim sup Λ∗(µM ) ≤
∫ 1

0

γ(tα(1− t)) + lim sup
∫ 1

0

tαM (1− t)dt

≤
∫ 1

0

γ(tα(1− t)) + lim sup
∫ 1

0

1
cM (t)

dt

=
∫ 1

0

γ(tα(1− t))−
∫ 1

0

tdχ(1− t)

= Λ∗(µ).

Step 3. Let µ = lλ be such that Λ∗(µ) < +∞, with l(u) =
∫ u

0
dm(s), and m = αλ. Remark that Λ∗(µ) < +∞

implies that s 7→ 1
c(s) := sα(1 − s) is ≥ 0 λ-a.s. and is in L1([0, 1]). Suppose moreover that there exists ε > 0 such

that:

1
c
≥ ε λ-a.s. (3.15)

Then let (cM ) ⊂ C be such that ∀s, 1
cM (s) >

ε
2 and 1

cM
→ 1

c in L1([0, 1]). Call αM (s) = 1
(1−s)cM (1−s) . Then the

measure µM with density lM : s 7→
∫ s

0
αM (t)dt converges to µ and Λ∗(µM ) → Λ∗(µ).



Large deviations for L-statistics 25

Indeed, for b ∈ C([0, 1]), we have
∫ 1

0
‖b‖∞sαM (1− s)ds < +∞ so by Fubini’s theorem:∫ 1

0

b(t)dµM (t) =
∫ 1

0

b(t)
∫ t

0

αM (s)dsdt

=
∫ 1

0

(∫ 1

1−s

b(t)dt
)
αM (1− s)ds

=
∫ 1

0

∫ 1

1−s
b(t)dt
s

sαM (1− s)ds

=
∫ 1

0

∫ 1

1−s
b(t)dt
s

1
cM (s)

ds

→
∫ 1

0

∫ 1

1−s
b(t)dt
s

1
c(s)

ds

=
∫ 1

0

(∫ 1

1−s

b(t)dt
)
α(1− s)ds

=
∫ 1

0

b(t)dµ(t).

By lower semicontinuity of Λ∗, lim inf Λ∗(µM ) ≥ Λ∗(µ). For the converse inequality: use that the strict convexity
of γ implies:

|Λ∗(µM )− Λ∗(µ)| =
∣∣∣∣∫ 1

0

γ(tαM (1− t)− tα(1− t))dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0

|t (αM (1− t)− α(1− t))|
∣∣∣∣1− 1

tαM (1− t)

∣∣∣∣ dt∣∣∣∣
≤
(

1 +
2
ε

)∥∥∥∥ 1
cM

− 1
c

∥∥∥∥
L1([0,1])

→ 0.

Step 4. Suppose that µ is as in Step 3 but that (3.15) is not assumed any more. Define αε such that: tαε(1− t) =
tα(1− t)1tα(1−t)>ε + ε1tα(1−t)≤ε and µε with density u 7→

∫ u

0
αε(s)ds. As |tαε(1− t)− tα(1− t)| ≤ ε for all t, by

computations already made in step 3, µε → µ. Now prove that Λ∗(µε) → Λ∗(µ):∫ 1

0

(γ(tαε(1− t))− γ(tα(1− t))) dt ≤
∫ 1

0

(tαε(1− t)− tα(1− t))
(

1− 1
tαε1− t)

)
dt.

But the absolute value of this last quantity can be bounded by∫ 1

0

ε1tα(1−t)≤ε

(
1 +

1
ε

)
= (ε+ 1)λ ({t : tα(1− t) ≤ ε}) .

And the measurable function t 7→ tα(1− t) is > 0 λ-almost surely, so λ ({t : tα(1− t) ≤ ε}) → 0, as ε→ 0. So:

lim sup
∫ 1

0

γ(tαε(1− t))dt ≤
∫ 1

0

γ(tα(1− t))dt,

which proves the required inequality. To conclude this step, approximate µε by µM as in Step 3.
Step 5. Suppose now that µ is any measure such that Λ∗(µ) < +∞. Combine Steps 1, 2 and 4 and use the

inequality
γ(τ1 + τ2 + τ3) ≤ γ(τ1) + τ2 + τ3 for τ1 > 0,τ2, τ3 ≥ 0.

2

2
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4 Appendix
Here we recall some basic facts of large deviations theory. For further results, we refer to Dembo and Zeitouni [5].

Définition 4.1 Let X be a Hausdorff space with Borel σ-algebra B(X ). I : X → R+ ∪ {+∞} is a lower semi-
continuous function. We say that a sequence (Rn) of probability measures on (X ,B(X )) satisfies a Large Deviations
Principle (LDP) with rate function I if for any A ∈ B(X ),

− inf
x∈Å

I(x) ≤ lim inf
n→∞

1
n

logRn(A) ≤ lim sup
n→∞

1
n

logRn(A) ≤ − inf
x∈clo(A)

I(x).

Définition 4.2 The rate function I is good if for all α, the level set {x : I(x) ≤ α} is a compact set.

Proposition 4.3 (Contraction principle)
Let X and Y be two Hausdorff spaces, and f : X → Y be a continuous function. Suppose that (Rn) satisfies a LDP
on X with good rate function I . Then the sequence of probability measures

(
Rn ◦ f−1

)
satisfies a LDP on Y with

good rate function I ′ defined for y ∈ Y by:

I ′(y) = inf{I(x) : x ∈ X , f(x) = y}.

Proposition 4.4 (Exponential equivalence)
Assume that X is a metric space, with distance denoted by d. Let ζn and ξn be two X -valued r.v.’s. They are called
exponentially equivalent if for all δ > 0,

lim sup
n→∞

1
n

logP (d (ζn, ξn) > δ) = −∞.

In that case, if (ζn) satisfies a LDP with good rate function, then the same LDP holds for (ξn).
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