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1 Introduction

In this paper we consider the limiting distribution of multiple stochastic integrals

with respect to the empirical process, namely, of objects of type

Jn,m(h) =
∫ ′
h(x1, . . . , xm) dGn(x1) · · · dGn(xm). (1)

Here Gn =
√
n(Pn − P ) denotes the normalized empirical measure based on the

i.i.d. random variables X1, . . . , Xn with common distribution P on some measurable

space (X,X ) and h is a real valued, symmetric function of m variables in L2(Pm).

From now on, any such h will be called a kernel.
∫ ′ denotes an integral in which

diagonals xr = xs, 1 ≤ r < s ≤ m are omitted from the domain of integration.

These multiple stochastic integrals appear naturally, for instance, as higher order

terms in the delta method for some non parametric maximum likelihood problems,

see, e.g., Major (2006), Major (2007) for further motivation and examples. They

are closely connected to U -statistics, namely, statistics of type

Un(h) =
1(
n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim). (2)

In fact, if the kernel h is completely degenerate then Jn,m(h) = n!
(n−m)!nm/2Un(h).

Hence, the classical central limit theorem (CLT) for completely degenerate U -statistics

(see, e.g., Arcones and Giné (1992)) provides the limiting distribution of Jn,m(h).

This limit is the multiple Wiener integral, that we denote Im(h).

In case of a non degenerate kernel h, the U -statistic Un(h) and the multiple integral

Jn,m(h) are not equal and do not have the same asymptotic behaviour. On one hand,

the CLT for Un(h) can be obtained via the Hoeffding decomposition from the CLT
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for completely degenerate U -statistics. A note in Arcones and Giné (1992) adds that

the exact form of the limit can be quite complicated when the degeneracy order of

the kernel is greater than 1.

On the other hand, the convergence in distribution of Jn,m(h) can be deduced from

recent work by Major (2007), Major (2006). However, the limit distribution is

not described with precision. The results there (Theorem 9.4 in Major (2007) or

Proposition 3 in Major (2006)) express Jn,m(h) as the sum of empirical integrals of

completely degenerate kernels: the conclusion is

Jn,m(h) =
m∑

k=0

C(n, k)Jn,m−k(πm−kh), (3)

where the completely degenerate kernels πm−kh are defined in (9) below and with

coefficients C(n, k) such that for all k,

C(n, k)→ Ck, n→∞.

From this is deduced that Jn,m(h) converges in distribution to

m∑
k=0

CkIm−k(πm−kh).

We need to know with precision the coefficients Ck to be able to know the limit

distribution. Our Theorem 3.2 below provides a decomposition of the same type

as (3), for symmetric kernels, and proves the convergence of coefficients to explicit

values that can be expressed in terms of the Hermite polynomials. The general CLT

for multiple integrals (Theorem 3.3) is deduced from this convergence.

The limiting distribution of the multiple integral Jn,m(h) is a multiple Wiener inte-

gral in the case of a completely degenerate kernel. When studying the non degenerate

case, we find that the limit could be expressed in a simple way if we could define
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formally an integral with respect to the Brownian bridge. The definition is given in

Definition 2.2 below. The main property of that integral is Proposition 2.3, which

is an analogue to the Hoeffding decomposition.

This article is organized as follows: Section 2 defines multiple integrals with respect

to the Brownian bridge. In Section 3, we prove the central limit theorem for the

multiple integral with respect to the empirical process, giving an explicit form for

the limit.

2 Multiple Wiener integrals

When studying the asymptotic behaviour of multiple integrals with respect to the

empirical measure, we face the difficulty caused by the fact that the limit of the

empirical measure is not the white noise with respect to which the multiple Wiener

integrals are defined. Let us pay attention to the case in which P is the uniform

distribution on (0, 1). Then {Gn(x)}x∈(0,1) converges in distribution (in different

topologies) to a Brownian bridge, {B(x)}x∈(0,1). This Brownian bridge can be rep-

resented as B(x) = W (x)− xW (1), where W is a standard Brownian motion. The

convergence of Gn to B seems to suggest that for suitable functions h(x1, . . . , xm)

the following may hold:

∫ ′
[0,1]m

h(x1, . . . , xm)dGn(x1) · · · dGn(xm)→
w

∫
[0,1]m

h(x1, . . . , xm)dB(x1) · · · dB(xm).

(4)

Before we give a meaning to the multiple integral with respect to the Brownian

bridge, let us recall some facts about Hermite polynomials and multiple Wiener
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integral. We call Hn(x) the normalized Hermite polynomial of degree n. The first

two of these polynomials are H0(x) = 1, H1(x) = x and the others can be calculated

from the following recursion

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x). (5)

Moreover, these polynomials satisfy

H ′n(x) = Hn−1(x). (6)

A proof of these facts can be found e.g. in Nualart (1995).

Multiple Wiener integrals for square integrable kernels h of m variables will be

denoted Im(h). We refer to Nualart (1995) for the definition and properties. We

include here a technical result about multiple integrals which is relevant for this

paper.

Lemma 2.1 If f ∈ L2(P p) and is completely degenerate, then

Ip+q(f ⊗ 1⊗q) = Ip(f)q!Hq(I1(1))

Proof. It follows from Proposition 1.1.3 and Theorem 1.1.2 in Nualart (1995).

We need to introduce the following notation as in Nualart (1995), p10. For two

symmetric functions f ∈ L2(P p), g ∈ L2(P q), and 1 ≤ r ≤ min(p, q), the contraction

of r indices of f and g is the function defined by

f ⊗r g(t1, . . . , tp+q−2r) =
∫

[0,1]r
f(t1, . . . , tp−r, s)g(tp+1, . . . , tp+q−r, s)P

r(ds).

The contraction f ⊗0 g is defined as f ⊗ g.
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From Theorem 1.1.2 in Nualart (1995), it follows that

Iq(1
⊗q) = q!Hq(I1(1)). (7)

On the other hand, from Proposition 1.1.3, we obtain

Ip(f)Iq(1
⊗q) =

pq∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r

(
f ⊗r 1⊗q

)
. (8)

But since f is completely degenerate, f ⊗r 1⊗q = 0 for all r ≥ 1. Indeed,

f ⊗r 1⊗q(t1, . . . , tp+q−2r) =
∫

[0,1]r
f(t1, . . . , tp−r, s)1

⊗q(tp+1, . . . , tp+q−r, s)P
r(ds)

= 0 for r ≥ 1.

Hence, the right-hand side in (8) equals Ip+q(f⊗1⊗q), which, combined to (7), yields

the result. 2

We can now give a meaning to the right-hand term of equality (4). We can use the

representation B(x) = W (x) − xW (1) and write (assuming that h is symmetric in

its m variables for the sake of simplicity) formally dB(x) = dW (x) −W (1)dx and

hence

∫
[0,1]m

h(x1, . . . , xm) dB(x1) · · · dB(xm) =
∫

[0,1]m
h(x1, . . . , xm)dW (x1) · · · dW (xm)

−m
∫

[0,1]m−1
ρm−1h(x1, . . . , xm−1)dW (x1) · · · dW (xm−1)W (1)

+

(
m

2

)∫
[0,1]m−2

ρm−2h(x1, . . . , xm−2)dW (x1) · · · dW (xm−2)W (1)2

+ · · ·+ (−1)mρ0hW (1)m,

where ρjh is the function of j variables defined as ρjh(x1, . . . , xj) = δx1 ×· · ·× δxj
×

Pm−jh.

This formal calculus motivates our definition of multiple integrals with respect to the

Brownian bridge.
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Definition 2.2 Given a kernel h ∈ L2(Pm) we define

Jm(h) =
m∑

k=0

(−1)k

(
m

k

)
(Im−k(ρm−kh))I1(1)k.

Recall that h is completely degenerate if ρkh = 0 for k < m. In that case, Jm(h) =

Im(h).

We will use the notation πjh for the Hoeffding projection of order j of h, i.e.,

πjh(x1, . . . , xj) = (δx1 − P )× · · · × (δxj
− P )× Pm−jh, j = 0, . . . ,m. (9)

Then π0h = Pmh and πjh is completely degenerate if j ≥ 1. With this notation we

can prove the following result, which is an analogue to the Hoeffding decomposition

for integrals with respect to the Brownian bridge.

Proposition 2.3 For any kernel h ∈ L2(Pm)

Jm(h) =
m∑

k=0

m!

(m− k)!
Hk(0)Im−k(πm−kh),

where Hk is the k-th Hermite polynomial.

Proof.Writing h(x1, . . . , xm) = δx1×· · ·×δxmh = (δx1−P+P )×· · ·×(δxm−P+P )h

we obtain

h(x1, . . . , xm) =πmh(x1, . . . , xm) +
∑

{i1,...,im−1}⊂{1,...,m}
πm−1h(xi1 , . . . , xim−1)

+ · · ·+
∑

{i1,...,im−k}⊂{1,...,m}
πm−kh(xi1 , . . . , xim−k

) + · · ·+ π0h.

Let us introduce the functions φm−k
j h defined for 1 ≤ j ≤ m as
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φm−k
j h:(x1, . . . , xj)7→


∑
{i1,...,im−k}⊂{1,...,j} πm−kh(xi1 , . . . , xim−k

) for 0 ≤ k ≤ m− 1,

π0h for k = m.

With this notation, we have: h =
∑m

k=0 φ
m−k
m h. Now, we observe that

ρjφ
m−k
m h =


0 if j = 0, . . . ,m− k − 1,

φm−k
j h if j ≥ m− k.

From this and from Definition 2.2 we obtain

Jm

(
φm−k

m h
)

=
k∑

j=0

(−1)j

(
m

j

)
Im−j

(
φm−k

m−jh
)
I1(1)j (10)

By linearity of the stochastic integral and by symmetry we have

Im−j

(
φm−k

m−jh
)

=

(
m− j
m− k

)
Im−j

(
πm−kh⊗ 1⊗k−j

)
. (11)

The binomial formula, the degeneracy of πm−kh and the properties of the Her-

mite polynomials (cf. Lemma 2.1) yield Im−j(πm−kh ⊗ 1⊗k−j) = Im−k(πm−kh)(k −

j)!Hk−j(I1(1)). Combining this equality with (10) and (11) we conclude that

Jm

(
φm−k

m h
)

=

(
m

k

)
Im−k(πm−kh)×

 k∑
j=0

(
k

j

)
(−1)j(k − j)!Hk−j(I1(1))I1(1)j

 .
The proof can be completed with the following simple lemma, which is a particular

case of Lemma 4.1 in Arcones and Giné (1993). 2

Lemma 2.4

k∑
j=0

(
k

j

)
(−1)j(k − j)!Hk−j(x)xj = k!Hk(0).
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3 Central limit theorem for multiple empirical integrals

The multiple stochastic integrals introduced in Section 2 will allow us to write a

unified CLT for multiple stochastic integrals with respect to the empirical process.

The key point here is that we find a precise Hoeffding type decomposition, with

convenient explicit expressions for the coefficients. Then, we give the general CLT,

valid for both degenerate and non degenerate kernels. The limit has exactly the same

form in both cases. Here, we can see the advantage of considering multiple empirical

integrals instead of U -statistics: the homogeneity of results without having to take

into account the degeneracy of the kernel.

Our result will follow from the CLT for completely degenerate U -statistics and from

Theorem 3.2 below. First, we write in our notation the existing result for degenerate

kernels. A proof can be found e.g. in Rubin and Vitale (1980), Arcones and Giné

(1992) or de la Peña and Giné (1999)). In what follows, w→ denotes the convergence

in distribution.

Theorem 3.1 Let (X1, . . . , Xn) be an i.i.d. sample with non atomic distribution P

and h1, . . . , hk completely degenerate kernels in m1, . . . ,mk variables. Then

(Jn,m1(h1), . . . , Jn,mk
(hk))

w→ (Im1(h1), . . . , Imk
(hk)) .

In order to deduce the limit distribution in the general case from the degenerate

case, we need the decomposition below, which is an analogue of the Hoeffding de-

composition. This result improves Proposition 3 of Major (2006) in the sense that

it provides an explicit expression for the coefficients in decomposition (3).
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Theorem 3.2 Let (X1, . . . , Xn) be an i.i.d. sample with distribution P and h a

kernel of m variables. We assume that P does not have atoms. We have the following

decomposition of Jn,m(h) as a sum of multiple integrals based on degenerate kernels:

Jn,m(h) =
m∑

j=0

Kn,j,mJn,j(πjh) (12)

where the coefficients are, for j ≤ m,

Kn,j,m = n−(m−j)/2
m−j∑
k=0

(−1)knk

(
m

k

)(
m− k

m− k − j

)
(n− j)!

(n−m+ k)!
.

Moreover, these coefficients satisfy the following convergence:

lim
n→∞

Kn,j,m =
m!

j!
Hm−j(0),

where for all k ≥ 0, Hk is the Hermite polynomial of order k.

Before we prove the theorem, let us introduce a notation to be used in the sequel:

we will denote by h̃ the kernel

h̃(x1, . . . , xm) =


h(x1, . . . , xm) if xi 6= xj, for 1 ≤ i < j ≤ n

0 otherwise.

As a consequence, Jn,m(h) is equal to Jn,m(h̃) and we can integrate h̃ also on the

diagonal, since it vanishes there.

Proof. We first prove the decomposition (12). We are going to use the following

notation: for coefficients ci1,...,ip , we define

∑
∆p

ci1,...,ip =
∑

1≤i1,...,ip≤n all different
ci1,...,ip .
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Jn,m(h) =n−m/2
∑

1≤i1,...,im≤n

∫
h̃(y1, . . . , ym)d(δXi1

− P )(y1) . . . d(δXim
− P )(ym)

=n−m/2
m∑

k=0

(−1)k

(
m

k

) ∑
1≤i1,...,im≤n

∫
h̃(Xi1 , . . . , Xim−k

, y1, . . . , yk)dP (y1) . . . dP (yk)

=n−m/2
m∑

k=0

(−1)knk

(
m

k

)∑
∆m−k

∫
h̃(Xi1 , . . . , Xim−k

, y1, . . . , yk)dP (y1) . . . dP (yk)

=n−m/2
m∑

k=0

(−1)knk

(
m

k

) ∑
∆m−k

ρm−kh(Xi1 , . . . , Xim−k
)

because the measure P does not have atoms. The variable

1

(m− k)!
(

n
m−k

) ∑
∆m−k

ρm−kh(Xi1 , . . . , Xim−k
)

is a U -statistic and Hoeffding’s decomposition (e.g., (3.5.1), p. 137 in de la Peña and

Giné (1999) gives (with the notation U (l)
n as the average of the values of a function

of l variables at the points (Xi1 , . . . , Xil), (i1, . . . , il) ∈ ∆l),

1

(m− k)!
(

n
m−k

) ∑
∆m−k

ρm−kh(Xi1 , . . . , Xim−k
) =

m−k∑
j=0

(
m− k
j

)
U (j)

n (πjρm−kh)

=
m−k∑
j=0

(
m− k
j

)
U (j)

n (πjh)

that is,

∑
∆m−k

ρm−kh(Xi1 , . . . , Xim−k
) =

m−k∑
j=0

(
m− k
j

)
(n− j)!

(n−m+ k)!

∑
∆j

πjh(Xi1 , . . . , Xij ).

It then follows from this, the previous set of identities and the definition of Kn,j,m,

that

Jn,m(h) =
m∑

j=0

Kn,j,mJn,j(πjh).

Now, it remains to prove that for all j ≤ m, Kn,j,m → m!
j!
Hm−j(0) when n→∞. We

are going to prove first this fact for j = 0 and whatever m, and then by induction

on j we will prove the formula for any j and m. The convergence of Kn,0,m can be
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proved by induction on m. For m = 0, it is easy because Kn,0,0 = 1 = H0(0). Now,

we assume that the convergence of Kn,0,p to p!Hp(0) is satisfied for all p ≤ m. In

order to prove that it holds also for p = m+ 1, we use the following expression:

Kn,0,m+1 = −n−1/2mKn,0,m −mKn,0,m−1. (13)

The proof, which is obtained via some technical computations, is postponed to the

Appendix. Hence, by the induction hypothesis,

Kn,0,m+1 → −m(m− 1)!Hm−1(0) = −m!Hm−1(0).

But this is the expected limit, since by property (5) of the Hermite polynomials,

(m+ 1)!Hm+1(0) = m!(m+ 1)Hm+1(0) = m!(0Hm(0)−Hm−1(0)) = −m!Hm−1(0).

Hence the convergence is proved for j = 0 and any m.

Let us now prove by induction on j that Kn,j,m converges to the expected limit.

We assume that the following property at rank j is satisfied: for any m such that

j ≤ m, Kn,j,m → m!
j!
Hm−j(0). This property is obviously satisfied for j = 0 by what

we have just proved. Now let us prove the property at rank j + 1. So, let m be such

that j + 1 ≤ m. Some technical but elementary computations lead to the following

recursive expression for Kn,j+1,m:

Kn,j+1,m = n1/2m− j
n− j

Kn,j,m +
n

n− j
m

j + 1
Kn,j,m−1. (14)

The proof of this formula is given in the Appendix. Now, we use the induction

hypothesis. n1/2 m−j
n−j

tends to 0 and Kn,j,m converges by the induction hypothesis,

so that n1/2 m−j
n−j

Kn,j,m → 0. On the other hand, j ≤ m − 1, so that, employing the
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induction hypothesis:

n

n− j
m

j + 1
Kn,j,m−1 →

m

j + 1

(m− 1)!

j!
Hm−1−j(0) =

m!

(j + 1)!
Hm−1−j(0)

and that proves that Kn,j+1,m → m!
(j+1)!

Hm−j−1(0), as n→∞. 2

Theorem 3.3 Let (X1, . . . , Xn) be an i.i.d. sample with non atomic distribution P

and let h1, . . . , hk be square integrable kernels in m1, . . . ,mk variables. Then

(Jn,m1(h1), . . . , Jn,mk
(hk))

w→ (Jm1(h1), . . . , Jmk
(hk)) .

Proof. Without loss of generality, we take k = 1. By Theorem 3.2 and Theorem 3.1

which gives the CLT for the multiple integral of degenerate kernels with respect to

the empirical process, we have

Jn,m(h) =
m∑

j=0

Kn,j,mJn,j(πjh)
w→

m∑
j=0

m!

j!
Hm−j(0)Ij(πjh) = Jm(h),

where we use Proposition 2.3 in the last identity. 2

Remark 3.4 This theorem gives a neat version of Theorem 10.4’ in Major (2007),

providing an explicit expression for the constants in the limit. The reader should

also compare to the CLT for general U -statistics (see Section 2A in Arcones and

Giné (1992) or Remark 4.2.5 in de la Peña and Giné (1999)) as well as to Theorem

1 in Dynkin and Mandelbaum (1983) where limit theorems for symmetric statistics

of possibly infinite order are derived. The picture is much clearer and easier for

stochastic integrals with respect to the empirical measure.

Acknowledgements: The authors want to thank an anonymous referee for her/his

careful reading of the manuscript and suggestions that have helped to improve the

final version of this manuscript.
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A Appendix: technical proofs

Proof of (13). Isolating the first and last terms that compose Kn,0,m+1, we have:

Kn,0,m+1 =n−(m+1)/2
m+1∑
k=0

(−1)knk

(
m+ 1

k

)
n!

(n−m+ k − 1)!

=n−(m+1)/2 n!

(n−m− 1)!
+ n−(m+1)/2(−1)m+1nm+1 (A.1)

+n−(m+1)/2
m∑

k=1

(−1)knk

((
m

k

)
+

(
m

k − 1

))
n!

(n−m+ k − 1)!
, (A.2)

by the binomial formula. The sum (A.2) over k is decomposed into two sums. The

first one is n−(m+1)/2∑m
k=1(−1)knk

(
m
k

)
n!

(n−m+k−1)!
, which is equal to

n−(m+1)/2
m∑

k=1

(−1)knk

(
m

k

)(
(n−m)

n!

(n−m+ k)!
+ k

n!

(n−m+ k)!

)

= n−1/2(n−m)n−m/2
m∑

k=0

(−1)knk

(
m

k

)
n!

(n−m+ k)!
− (n−m)n−(m+1)/2 n!

(n−m)!

+n−(m+1)/2
m−1∑
j=0

(−1)j+1nj+1 m!

j!(m− 1− j)!
n!

(n−m+ j + 1)!

= n−1/2(n−m)Kn,0,m − n−(m+1)/2 n!

(n−m− 1)!

−n−(m+1)/2nm
m−1∑
j=0

(−1)jnj

(
m− 1

j

)
n!

(n− (m− 1) + j)!

= n−1/2(n−m)Kn,0,m − n−(m+1)/2 n!

(n−m− 1)!
−mKn,0,m−1. (A.3)

The second sum is n−(m+1)/2∑m
k=1(−1)knk

(
m

k−1

)
n!

(n−m+k−1)!
, which is equal to

−n1/2Kn,0,m−n−(m+1)/2nm+1(−1)m+1. (A.4)

Now, we add (A.1) and the terms (A.3) and (A.4) which sum up (A.2). The terms

(A.1) cancel with terms appearing in (A.2) and we get
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Kn,0,m+1 =n−1/2(n−m)Kn,0,m −mKn,0,m−1 − n1/2Kn,0,m

= −n−1/2mKn,0,m −mKn,0,m−1.

2

Proof of the induction formula (14). It will be useful to employ the following,

more compact expression for Kn,j,m:

Kn,j,m = n−(m−j)/2m!

j!

m−j∑
k=0

(−1)kn
k

k!

(
n− j

m− j − k

)
.

Using the last expression,

Kn,j+1,m =n−(m−j−1)/2 m!

(j + 1)!

m−j−1∑
k=0

(−1)kn
k

k!

(
n− j − 1

m− j − 1− k

)

=n−(m−j−1)/2 m!

(j + 1)!

m−j−1∑
k=0

(−1)kn
k

k!

(
n− j

m− j − k

)
(A.5)

−n−(m−j−1)/2 m!

(j + 1)!

m−j−1∑
k=0

(−1)kn
k

k!

(
n− j − 1

m− j − k

)
. (A.6)

We can treat separately these two terms. (A.5) is equal to

n1/2

j + 1
Kn,j,m − n−(m−j−1)/2 m!

(j + 1)!
(−1)m−j nm−j

(m− j)!
.

(A.6) can be handled using that

(
n− j − 1

m− j − k

)
=

1

n− j

(
n− j

m− j − k

)
((n−m) + k).

Therefore, (A.6) is equal to the sum of the two terms

−n−m
n− j

n−(m−j−1)/2 m!

(j + 1)!

m−j−1∑
k=0

(−1)kn
k

k!

(
n− j

m− j − k

)
(A.7)

− 1

n− j
n−(m−j−1)/2 m!

(j + 1)!

m−j−1∑
k=0

(−1)kn
k

k!
k

(
n− j

m− j − k

)
. (A.8)
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(A.7) is equal to

− n−m
(n− j)(j + 1)

n1/2Kn,j,m +
n−m
(n− j)

n−(m−j−1)/2 m!

(j + 1)!
(−1)m−j nm−j

(m− j)!
.

The term (A.8) is

n

n− j
m

j + 1
Kn,j,m−1 +

1

n− j
n−(m−j−1)/2 m!

(j + 1)!
(−1)m−j nm−j

(m− j − 1)!

Therefore, after simplification, Kn,j+1,m is equal to the following:

n1/2m− j
n− j

Kn,j,m +
n

n− j
m

j + 1
Kn,j,m−1.

2
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