Large deviations for *L*-statistics F.Gamboa, H.Boistard

Scheme

- **1**. *L*-statistics : definition, expression, limit theorems.
- 2. Large deviations : some tools from the large deviations theory, a large deviations principle for some *L*-statistics.
- 3. Example : the uniform law.

Definition of an L-statistics

 $(X_i), i = 1 \dots n$ an i.i.d. sample with distribution function F, and $X_{(1)} \leq \dots \leq X_{(n)}$ the associated order statistics.

Definition 1 An L-statistics is of the form :

$$A_n = \frac{1}{n} \sum_{i=1}^n c_{n,i} b(X_{(i)}),$$

where $c_{n,i}$ are some possibly k-dimensional coefficients and b is some function from \mathbb{R} to \mathbb{R} .

In many examples b is the identity and $c_{n,i} \simeq a(\frac{i}{n})$ for some bounded function a on [0, 1].

Examples of *L***-statistics**

• α -trimmed mean : $\frac{1}{n-2\lfloor \alpha n \rfloor} \sum_{i=\lfloor \alpha n \rfloor+1}^{n-\lfloor \alpha n \rfloor} X_{(i)}$.

The corresponding function is $a(t) = \begin{cases} 0 & \text{for } t < \alpha \text{ or } t > 1 - \alpha, \\ \frac{1}{1 - 2\alpha} & \text{for } t \in [\alpha, 1 - \alpha]. \end{cases}$

• a part of D'Agostino's goodness-of-fit test statistics :

$$D = \frac{\sum_{i=1}^{n} (i - (n+1)2^{-1}) X_{(i)}}{n^2 S_n},$$

where S_n^2 is the sample variance. The corresponding function is $a(t) = t - \frac{1}{2}$. • Gini's difference mean : $(X_i), i = 1 \dots n$ an i.i.d. sample with distribution function F.

A dispersion parameter : $\theta = E(|X_1 - X_2|)$ and its estimator

$$T_n = \frac{1}{C_n^2} \sum_{i < j} |X_i - X_j| = \frac{1}{C_n^2} \sum_{i=1}^n (-n + 2i - 1) X_{(i)}.$$

The corresponding function a is

$$a(t) = 4(t - \frac{1}{2}).$$

Expression with the quantile function

For G a distribution function, the associated quantile function is defined by its left continuous left inverse

$$G^{-1}(t) = \inf\{x : G(x) \ge t\}$$
 for $t \in [0, 1]$.

The empirical distribution function defined for $x \in \mathbb{R}$ by

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}$$

admits as an inverse $F_n^{-1} : t \mapsto X_{(i)}$ for $t \in]\frac{i-1}{n}, \frac{i}{n}].$

 $A_n \simeq \frac{1}{n} \sum_{i=1}^n a(\frac{i}{n}) b(X_{(i)}) = \sum_{i=1}^n \int_{\frac{i-1}{n}}^{\frac{i}{n}} a(\frac{i}{n}) b(F_n^{-1}(t)) dt \simeq \int_0^1 a(t) b(F_n^{-1}(t)) dt.$

Limit properties for L-statistics

• Helmers (1978-1981), Vandemaele and Veraverbeke (1982) : approximation of *L*-statistics with *U*-statistics, and obtention of Berry-Esseen bounds. Conditions on the coefficients $c_{n,i}$, *b* the identity.

• Shorack and Wellner (1986) : treatment via empirical processes and obtention of weak and strong laws of large numbers, CLT and law of iterated logarithm. Conditions of boundedness of a and b.

• More recently, for instance weaker sufficient conditions on b (under rather strong conditions on a) obtained by Li, Rao and Tomkins (2001) for the obtention of the CLT and the LIL.

Large deviations

 (X, \mathcal{B}) is a topological space with its borelian sigma-algebra.

Definition 2 A sequence (P_n) of probability measures on (X, \mathcal{B}) satisfies a Large Deviations Principle (LDP) with speed n if there exists a function $I : X \to [0, +\infty]$ lower-semicontinuous, called rate function, such that for all $A \in \mathcal{B}$

$$-\inf_{x\in \mathring{A}}I(x) \leq \liminf_{n\to +\infty}\frac{1}{n}\log P_n(A) \leq \limsup_{n\to +\infty}\frac{1}{n}\log P_n(A) \leq -\inf_{x\in \overline{A}}I(x)$$

The rate function I is said to be *good* if its level sets are compact.

A sequence of random variables (X_n) on a probability space (Ω, \mathcal{A}, P) , is said to satisfy a LDP if the sequence of probability measures defined by $P_n = \mathcal{L}(X_n)$ satisfies a LDP.

Tools from the theory of large deviations

Theorem 1 Contraction principle Let (P_n) be a sequence of probability measures on (X, \mathcal{B}) which satisfies a LDP with good rate function I, Y a metric space and $f : X \to Y$ a continuous function.

Then the sequence of probability measures on $Y P_n \circ f^{-1}$ satisfies a LDP with good rate function

$$J(y) = \inf\{I(x) : f(x) = y\} \text{ for } y \in Y.$$

Definition 3 Exponential equivalence Let (X_n) and (Y_n) be random variables on a probability space (Ω, \mathcal{A}, P) , with value in some metric space (Y, d). (X_n) and (Y_n) are called exponentially equivalent if for every $\epsilon > 0$,

$$\limsup_{n\to\infty}\frac{1}{n}\log P(d(X_n,Y_n)>\epsilon)=-\infty.$$

Theorem 2 If a LDP with a good rate function holds for the random variables (X_n) which are asymptotically equivalent to the r.v. (Y_n) , then the same holds for (Y_n) .

Sanov's theorem

The space $\mathbb{P}(\mathbb{R})$ of all probability measures on \mathbb{R} is equipped with the topology of weak convergence of probability measures. Let $(X_i), i = 1 \dots n$ be an i.i.d. sample with law $P \in \mathbb{P}(\mathbb{R})$.

Definition 4 The empirical measure associated to this sample is

$$\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

Theorem 3 ν_n satisfies a LDP with good rate function

$$I(Q) = \begin{cases} \int \log(\frac{dQ}{dP}) dQ & \text{ for } Q \ll P \text{ and } \log(\frac{dQ}{dP}) \in L_1(Q), \\ +\infty & \text{ else.} \end{cases}$$

Exponentially equivalent statistics

Proposition 1 Let $T_{n,a} = \int_0^1 a(t) F_n^{-1}(t) dt$ and $A_n = \frac{1}{n} \sum_{i=1}^n a(\frac{i}{n}) X_{(i)}$. Suppose the following hypotheses are satisfied :

(I) regularity of a: for all n there exists $b_n = o(1/n)$ such that for all $i = 1 \dots n$

$$\left\|\frac{1}{n}a(\frac{i}{n}) - \int_{\frac{i-1}{n}}^{\frac{i}{n}}a(t)dt\right\| \le b_n.$$

(II) the domain of definition of the Laplace transform of $|X_i|$ is not reduced to $\{0\}$,

then for every $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\log P(\|A_n-T_{n,a}\|>\epsilon)=-\infty.$$

11

LDP for $T_{n,a}$ obtained by contraction

Theorem 4 Suppose that (III) *F* has compact support included in [-M, M] and that (IV) *a* is bounded on [0, 1], then $T_{n,a} = \int_0^1 a(t) F_n^{-1}(t) dt$ satisfies a LDP with good rate function $J(C) = \inf\{I(G) : G \text{ is a d.f. on } \mathbb{R} \text{ s.t. } \int_0^1 a(t) G^{-1}(t) dt = C\}.$

Statement of the LDP for A_n

Suppose that hypotheses

(I) regularity of a

(III) boundedness of the support of F

(IV) boundedness of a

are satisfied. Then A_n satisfies a LDP with good rate function

$$J(C) = \inf\{I(G) : G \text{ is a d.f.on } \mathbb{R} \text{ s.t. } \int_0^1 a(t)G^{-1}(t)dt = C\}.$$

Example : the uniform law on [0, 1]

We denote the uniform d.f. by F : F(t) = t for $t \in [0, 1]$. Let \mathcal{X} be the set of all $x = G^{-1}$ for $G \ll F$. The elements of this set are derivable almost everywhere. For $x = G^{-1} \in \mathcal{X}$, let

$$K(x) := I(G) = -\int_0^1 \log x'(t) dt$$

Minimization problem (P) : minimize

$$K(x) = \begin{cases} -\int_0^1 \log x'(t)dt & \text{ for } x \in \mathcal{X} \\ +\infty & \text{ elsewhere,} \end{cases}$$

under the (possibly k-dimensional) constraint : $\int_0^1 a(t)x(t)dt = C$. J(C) is the value of the minimum.

Result of the minimization

Suppose that $\int_0^1 a(t)dt = 0$, put $A(t) = \int_t^1 a(s)ds$.

Proposition 2 The minimum value of the minimization problem (P) is

$$J(C) = 1 + \sup_{\lambda \in \mathbb{R}, \mu \in \mathbb{R}^k} \lambda + <\mu, C > + \int_0^1 \log(-\lambda - <\mu, A(s) >) ds$$

where <,> denotes the usual scalar product in \mathbb{R}^k .

Sketch of the proof

• formulation of (P) in terms of x' = y. (\tilde{P}) Minimize $\tilde{K}(y) = -\int_0^1 \log y(t) dt$ under the constraints

$$\int_{0}^{1} A(s)y(s)ds = C, 0 \le \int_{0}^{1} y(t)dt \le 1$$

• fix $\int_0^1 y(t)dt = \alpha$, and obtain minimization problem (P_α) , minimum found by a duality argument.

• minimax argument to find the minimum (over α) of the minimum values for each (P_{α})

• final discussion.

References

- R.Helmers, Ann. Prob., Vol. 9, No2 (1981).
- M.Vandemaele, N.Veraverbeke, Ann. Prob., Vol. 10, No2 (1982).
- G.R.Shorack, J.A.Wellner, Empirical Processes With Applications to Statistics, Wiley (1986).
- D.Li, M.B.Rao, R.J.Tomkins, Journ. Mult. Analysis, 78 (2001).
- J.M.Borwein, A.S.Lewis, SIAM J. Optimization, Vol. 3, No2 (1993).