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Scheme

1. L-statistics : definition, expression, limit theorems.

2. Large deviations : some tools from the large deviations
theory, a large deviations principle for some L-statistics.

3. Example : the uniform law.
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Definition of an L-statistics

(Xi), i = 1 . . . n an i.i.d. sample with distribution function F , and
X(1) ≤ · · · ≤ X(n) the associated order statistics.

Definition 1 An L-statistics is of the form :

An =
1

n

n∑
i=1

cn,ib(X(i)),

where cn,i are some possibly k-dimensional coefficients and b is some
function from R to R.

In many examples b is the identity and cn,i ' a( i
n) for some bounded

function a on [0,1].

2



Examples of L-statistics

• α-trimmed mean : 1
n−2bαnc

∑n−bαnc
i=bαnc+1 X(i).

The corresponding function is a(t) =

0 for t < α or t > 1− α,
1

1−2α for t ∈ [α,1− α].

• a part of D’Agostino’s goodness-of-fit test statistics :

D =

∑n
i=1(i− (n + 1)2−1)X(i)

n2Sn
,

where S2
n is the sample variance.

The corresponding function is a(t) = t− 1
2.
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• Gini’s difference mean : (Xi), i = 1 . . . n an i.i.d. sample with distri-
bution function F .
A dispersion parameter : θ = E(|X1 −X2|) and its estimator

Tn =
1

C2
n

∑
i<j

|Xi −Xj| =
1

C2
n

n∑
i=1

(−n + 2i− 1)X(i).

The corresponding function a is

a(t) = 4(t−
1

2
).
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Expression with the quantile function

For G a distribution function, the associated quantile function is de-
fined by its left continuous left inverse

G−1(t) = inf{x : G(x) ≥ t} for t ∈ [0,1].

The empirical distribution function defined for x ∈ R by

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}

admits as an inverse F−1
n : t 7→ X(i) for t ∈]i−1

n , i
n].

An '
1

n

n∑
i=1

a(
i

n
)b(X(i)) =

n∑
i=1

∫ i
n

i−1
n

a(
i

n
)b(F−1

n (t))dt '
∫ 1

0
a(t)b(F−1

n (t))dt.

5



Limit properties for L-statistics

• Helmers (1978-1981), Vandemaele and Veraverbeke (1982) : ap-
proximation of L-statistics with U-statistics, and obtention of Berry-
Esseen bounds. Conditions on the coefficients cn,i, b the identity.

• Shorack and Wellner (1986) : treatment via empirical processes
and obtention of weak and strong laws of large numbers, CLT and
law of iterated logarithm. Conditions of boundedness of a and b.

• More recently, for instance weaker sufficient conditions on b (un-
der rather strong conditions on a) obtained by Li, Rao and Tomkins
(2001) for the obtention of the CLT and the LIL.
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Large deviations

(X,B) is a topological space with its borelian sigma-algebra.

Definition 2 A sequence (Pn) of probability measures on (X,B) sa-
tisfies a Large Deviations Principle (LDP) with speed n if there exists
a function I : X → [0,+∞] lower-semicontinuous, called rate function,
such that for all A ∈ B

− inf
x∈Å

I(x) ≤ lim inf
n→+∞

1

n
logPn(A) ≤ lim sup

n→+∞

1

n
logPn(A) ≤ − inf

x∈Ā
I(x)

The rate function I is said to be good if its level sets are compact.

A sequence of random variables (Xn) on a probability space (Ω,A, P ),
is said to satisfy a LDP if the sequence of probability measures defined
by Pn = L(Xn) satisfies a LDP.
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Tools from the theory of large deviations

Theorem 1 Contraction principle Let (Pn) be a sequence of pro-
bability measures on (X,B) which satisfies a LDP with good rate
function I, Y a metric space and f : X → Y a continuous function.

Then the sequence of probability measures on Y Pn ◦ f−1 satisfies a
LDP with good rate function

J(y) = inf{I(x) : f(x) = y} for y ∈ Y .
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Definition 3 Exponential equivalence Let (Xn) and (Yn) be ran-
dom variables on a probability space (Ω,A, P ), with value in some
metric space (Y, d). (Xn) and (Yn) are called exponentially equivalent
if for every ε > 0,

lim sup
n→∞

1

n
logP (d(Xn, Yn) > ε) = −∞.

Theorem 2 If a LDP with a good rate function holds for the random
variables (Xn) which are asymptotically equivalent to the r.v. (Yn),
then the same holds for (Yn).
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Sanov’s theorem

The space P(R)of all probability measures on R is equipped with the
topology of weak convergence of probability measures.
Let (Xi), i = 1 . . . n be an i.i.d. sample with law P ∈ P(R).

Definition 4 The empirical measure associated to this sample is

νn =
1

n

n∑
i=1

δXi
.

Theorem 3 νn satisfies a LDP with good rate function

I(Q) =


∫
log(dQ

dP )dQ for Q � P and log(dQ
dP ) ∈ L1(Q),

+∞ else.
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Exponentially equivalent statistics

Proposition 1 Let Tn,a =
∫ 1
0 a(t)F−1

n (t)dt and An = 1
n

∑n
i=1 a( i

n)X(i).
Suppose the following hypotheses are satisfied :
(I) regularity of a : for all n there exists bn = o(1/n) such that for all
i = 1 . . . n

‖
1

n
a(

i

n
)−

∫ i
n

i−1
n

a(t)dt‖ ≤ bn.

(II) the domain of definition of the Laplace transform of |Xi| is not
reduced to {0},
then for every ε > 0,

lim
n→∞

1

n
logP (‖An − Tn,a‖ > ε) = −∞.
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LDP for Tn,a obtained by contraction

Theorem 4 Suppose that
(III) F has compact support included in [−M, M ] and that
(IV) a is bounded on [0,1],
then Tn,a =

∫ 1
0 a(t)F−1

n (t)dt satisfies a LDP with good rate function

J(C) = inf{I(G) : G is a d.f. on R s.t.
∫ 1

0
a(t)G−1(t)dt = C}.
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Statement of the LDP for An

Suppose that hypotheses
(I) regularity of a

(III) boudedness of the support of F

(IV) boundedness of a

are satisfied. Then An satisfies a LDP with good rate function

J(C) = inf{I(G) : G is a d.f.on R s.t.
∫ 1

0
a(t)G−1(t)dt = C}.
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Example : the uniform law on [0,1]

We denote the uniform d.f. by F : F (t) = t for t ∈ [0,1]. Let X be the
set of all x = G−1 for G � F . The elements of this set are derivable
almost everywhere. For x = G−1 ∈ X , let

K(x) := I(G) = −
∫ 1

0
logx′(t)dt.

Minimization problem (P ) : minimize

K(x) =

−
∫ 1
0 logx′(t)dt for x ∈ X

+∞ elsewhere,

under the (possibly k-dimensional) constraint :
∫ 1
0 a(t)x(t)dt = C.

J(C) is the value of the minimum.
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Result of the minimization

Suppose that
∫ 1
0 a(t)dt = 0, put A(t) =

∫ 1
t a(s)ds.

Proposition 2 The minimum value of the minimization problem (P )

is

J(C) = 1 + sup
λ∈R,µ∈Rk

λ+ < µ, C > +
∫ 1

0
log(−λ− < µ, A(s) >)ds

where <, > denotes the usual scalar product in Rk.
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Sketch of the proof

• formulation of (P ) in terms of x′ = y.
(P̃ ) Minimize K̃(y) = −

∫ 1
0 log y(t)dt under the constraints∫ 1

0
A(s)y(s)ds = C,0 ≤

∫ 1

0
y(t)dt ≤ 1.

• fix
∫ 1
0 y(t)dt = α, and obtain minimization problem (Pα), minimum

found by a duality argument.
• minimax argument to find the minimum (over α) of the minimum
values for each (Pα)

• final discussion.
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