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Scheme

. L-statistics : definition, expression, limit theorems.

. Large deviations : some tools from the large deviations
theory, a large deviations principle for some L-statistics.

. Example : the uniform law.



Definition of an L-statistics

(X;),s = 1...n an i.i.d. sample with distribution function F , and
X(1) < - < X(,) the associated order statistics.

Definition 1 An L-statistics is of the form :
1 n

An =~ > cnib(X())s
i=1

where c,, ; are some possibly k-dimensional coefficients and b is some
function from R to R.

In many examples b is the identity and ¢, ; ~ a(%) for some bounded
function a on [0, 1].



Examples of L-statistics

e a-trimmed mean : n—21Lom,j Z?;LLSZJJ+1 X ().

| o 0 fort<aort>1-a,
The corresponding function is a(t) = { 1 for t € [O‘ 1—af )
o, L — .
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e a part of D'Agostino’'s goodness-of-fit test statistics :

_ X G- (n+ 127D X

D ,

where S2 is the sample variance.
The corresponding function is a(t) =t — %



e Gini's difference mean : (X;),2=1...n an i.i.d. sample with distri-
bution function F'.
A dispersion parameter : § = E(| X1 — X5|) and its estimator

T = CQZ|X X|—CQZ< n+2i - DX,

n 1<y n ;=1

The corresponding function a is

1
at) = 4(t - ).



EXxpression with the quantile function

For G a distribution function, the associated quantile function is de-
fined by its left continuous left inverse

Gl = inf{z : G(x) >t} for t € [0, 1].
The empirical distribution function defined for x € R by
1 n
Fn(z) = — 'Z lix,<a)

admits as an inverse F; 1 :t— X, for t €)1

n’n

~ 2 Z a(i)b(X(z’)) =) /Z a(Y(FH())dt = /01 a()b(F71(t))dt.
Ni=1 T =1’ n

5



Limit properties for L-statistics

e Helmers (1978-1981), Vandemaele and Veraverbeke (1982) : ap-
proximation of L-statistics with U-statistics, and obtention of Berry-
Esseen bounds. Conditions on the coefficients ¢, ;, b the identity.

e Shorack and Wellner (1986) : treatment via empirical processes
and obtention of weak and strong laws of large numbers, CLT and
law of iterated logarithm. Conditions of boundedness of a and b.

e More recently, for instance weaker sufficient conditions on b (un-
der rather strong conditions on a) obtained by Li, Rao and Tomkins
(2001) for the obtention of the CLT and the LIL.



Large deviations
(X, B) is a topological space with its borelian sigma-algebra.

Definition 2 A sequence (P,) of probability measures on (X,B) sa-
tisfies a Large Deviations Principle (LDP) with speed n if there exists
a function I : X — [0, +oo] lower-semicontinuous, called rate function,
such that for all A € B

1 1
— inf I(x) <Iliminf —log P,(A) < limsup —log P,(A) < — inf I(x)

reA n—-+oo n n—-4+oco N rEA

The rate function [ is said to be good if its level sets are compact.

A sequence of random variables (X,) on a probability space (2, A, P),
IS said to satisfy a LDP if the sequence of probability measures defined
by P, = L(X,) satisfies a LDP.



Tools from the theory of large deviations

Theorem 1 Contraction principle Let (P,) be a sequence of pro-
bability measures on (X,B) which satisfies a LDP with good rate
function I, Y a metric space and f : X — Y a continuous function.

Then the sequence of probability measures on'Y P, o f—l satisfies a
LDP with good rate function

J(y) =inf{I(z) : f(x) =y} foryeY.



Definition 3 Exponential equivalence Let (X,) and (Y,) be ran-
dom variables on a probability space (£2,.A, P), with value in some
metric space (Y,d). (Xp) and (Y,) are called exponentially equivalent
if for every ¢ > 0,
1
limsup —log P(d(Xn,Yn) > €) = —oo.
n—oo N
Theorem 2 If a LDP with a good rate function holds for the random

variables (X,) which are asymptotically equivalent to the r.v. (Yy),
then the same holds for (Yy).



Sanov’s theorem
The space P(R)of all probability measures on R is equipped with the
topology of weak convergence of probability measures.

Let (X;),2=1...n be an i.i.d. sample with law P € P(R).

Definition 4 T he empirical measure associated to this sample is
1 n
=1

Theorem 3 v, satisfies a LDP with good rate function

I(Q) — {f'Og(Zg)dQ for Q < P and |Og(§—g) - LI(Q):
—+ o0 else.
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Exponentially equivalent statistics

Proposition 1 Let Ty 4 = fol a(t)F-1(t)dt and A, = %Z?}zl a(%)X(i).
Suppose the following hypotheses are satisfied :
(I) regularity of a : for all n there exists by, = o(1/n) such that for all

1=1...n
i

1 i ’
|Za(2) — [, a()dt] < b
non o

(II) the domain of definition of the Laplace transform of |X;| is not
reduced to {0},
then for every e > 0,

1
lim —log P(||An — Thal| > €) = —cc.

n—aoon
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LDP for 7, , obtained by contraction

Theorem 4 Suppose that

(III) ' has compact support included in [—M, M] and that
(IV) a is bounded on [0, 1],

then Ty q = f(} a(t)F1(t)dt satisfies a LDP with good rate function

J(C) =inf{I(G) :G is ad.f. onR s.t. /01 a()G L(t)dt = Cl.
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Statement of the LDP for A,

Suppose that hypotheses

(I) regularity of a

(III) boudedness of the support of F
(IV) boundedness of a

are satisfied. Then A, satisfies a LDP with good rate function

J(C) =inf{I(G) : G is a d.f.on R s.t. /01 a(t)G~L(t)dt = C}.
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Example : the uniform law on [0, 1]

We denote the uniform d.f. by F' : F'(t) =t for t € [0,1]. Let X be the

set of all x = G~ 1 for G <« F. The elements of this set are derivable
almost everywhere. For x = G~ ¢ X, let

1
K(z) = I(G) = — /O log =/ (£)dt.

Minimization problem (P) : minimize

K(z) = — [dlog/(t)dt forze X
40 elsewhere,

under the (possibly k-dimensional) constraint : fol a(t)x(t)dt = C.
J(C) is the value of the minimum.
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Result of the minimization
Suppose that [3 a(t)dt = 0, put A(t) = [ a(s)ds.

Proposition 2 The minimum value of the minimization problem (P)
IS

1
J(C)=14+ sup I+ <u,C > —I—/ log(—A\— < u, A(s) >)ds
AeR, peRF 0

where <, > denotes the usual scalar product in RF .
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Sketch of the proof

e formulation of (P) in terms of 2/ = v.
(P) Minimize K(y) = — /3 log y(t)dt under the constraints

1 1
/O A(s)y(s)ds = C,0 < /O y(t)dt < 1.

o fix fol y(t)dt = «, and obtain minimization problem (FP,), minimum
found by a duality argument.

e minimax argument to find the minimum (over «) of the minimum
values for each (FPyp)

e final discussion.
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