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Abstract. In this paper the unit root tests proposed by Dickey and Fuller (DF) and their

rank counterpart suggested by Breitung and Gouriéroux (1997) (BG) are analytically in-

vestigated under the presence of additive outlier (AO) contaminations. The results show

that the limiting distribution of the former test is outlier dependent, while the latter one

is outlier free. The finite sample size properties of these tests are also investigated under

different scenarios of testing contaminated unit root processes. In the empirical study, the

alternative DF rank test suggested in Granger and Hallman (1991) (GH) is also considered.

In Fotopoulos and Ahn (2003), these unit root rank tests were analytically and empirically

investigated and compared to the DF test, but with outlier-free processes. Thus, the results

provided in this paper complement the studies of the previous works, but in the context of

time series with additive outliers. Equivalently to DF and Granger and Hallman (1991) unit

root tests, the BG test shows to be sensitive to AO contaminations, but with less severity.

In practical situations where there would be a suspicion of additive outlier, the general con-

clusion is that the DF and Granger and Hallman (1991) unit root tests should be avoided,

however, the BG approach can still be used.
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1. Introduction

An important issue in time series analysis is the determination of the degree of integration.

In the standard ARIMA(p, d, q) model, the degree d of integration is defined as the number

of times the series must be differenced to yield a stationary time series with invertible MA

representation (Breitung (1994)). Then, the order of integration of a time series is a crucial

determinant of the properties exhibited by the series and, therefore, unit root tests play an

important role in the analysis of non-stationary time series. Since the seminal works by

Dickey and Fuller (1979, 1981) and Said and Dickey (1984), usually referred as DF and ADF

tests respectively, testing unit root has become routine in empirical studies, specially in the

economic area.

Since the early 90’s, various generalizations of DF and ADF tests have been proposed

for handling unit root processes, see for example, Elliot et al. (1996), Aparicio et al. (2006),

Demetrescu et al. (2008) and Astill et al. (2013) and Westerlund (2014) for a recent review.

Among all the research dedicated to unit root processes, a special attention has been paid to
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testing unit root against fractional alternatives, and the studies have indicated that the power

of DF test is low in such circumstances (see Hassler and Wolters (1994); Kramer (1998); Wang

(2011) and references therein). To improve the power and the size of unit root tests, boot-

strap techniques have been considered in a large number of papers as an alternative way to

distinguish long-memory processes from more common I(0) and I(1) processes, see for exam-

ple, Franco and Reisen (2007) and Palm et al. (2008). Demetrescu et al. (2008) proposed an

integration test against fractional alternatives which is based on the pioneering Lagrange mul-

tiplier (LM) test suggested by Robinson (1991) and further studied by Breitung and Hassler

(2002) among others.

An alternative nonparametric unit root test, the DF test based on ranks (DF-rank test),

to deal with non-linear transformations was firstly discussed in Granger and Hallman (1991),

further studied by Breitung and Gouriéroux (1997) and by Fotopoulos and Ahn (2003). The

DF-rank tests do not use the observations but rather the ranks of the observations which

makes the tests relatively insensitive to outlying observations. A discussion of the advantage

of the nonparametric unit root test over the parametric one is given in the introduction section

of Breitung and Gouriéroux (1997).

Under some assumptions, Breitung and Gouriéroux (1997) derived the asymptotic behavior

of their test under the null hypothesis. In the same direction, Fotopoulos and Ahn (2003)

considered comparisons between Breitung and Gouriéroux (1997) and Granger and Hallman

(1991) rank statistics for the unit root test. The authors also provide the limiting distribution

of the Breitung and Gouriéroux (1997) test under the null hypothesis and give small sample

properties. In these works, the tests were built and empirically tested under the alternative

of AR processes. The empirical study undertaken by Fotopoulos and Ahn (2003) indicated

that the DF test showed higher power than the rank test counterparts. An alternative robust

approach based on ranks to test unit root was recently proposed by Hallin et al. (2011), and

they showed that their method is robust with respect to the innovation density.

An advantage of the DF-rank test over the parametric is that the nonparametric approach

is, in general, outlier-resistant. As is well-known, the outliers may seriously destroy the

statistical property of an estimator (Chan (1995)). See, for example, Martin and Yohai (1986)

in the case of the least square estimator and the recent works by Molinares et al. (2009) and

by Lévy-Leduc et al. (2011b,a) and Reisen and Molinares (2012) in the context of time series

with short and long-memory properties. Franses and Haldrup (1994) investigated the size of

the DF test in the presence of additive outliers. These authors provide analytical as well as

empirical evidences that AO may produce spurious stationarity, that is, the additive outliers

provoke the rejection of unit root too often. The recent work Astill et al. (2013) suggests a

bootstrap test for detecting additive AO in a univariate unit root process. As an alternative

way to testing unit root with data anomalies and, also, with different error distributions,

M -estimators have been invoked in some studies, for example, Lucas (1995) and Carstensen

(2003).
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Although the M -robust unit root tests are in some way better protected against some

deviations from gaussianity, however, under additive outliers they fail to produce stable sizes

and good power properties. Their size distortions are similar to the DF test.

The work reported here complements the research of Granger and Hallman (1991),

Breitung and Gouriéroux (1997), Fotopoulos and Ahn (2003) and Hallin et al. (2011) by pro-

viding the asymptotic distribution of the rank tests for unit root processes with additive

outliers. Under outliers contaminations, the size and the power of the tests are investigated

empirically for finite sample sizes. The rest of this paper is organized as follows. Section 2

discusses the analytical results of the unit root testings whether the process is contaminated

with additive outliers or not. In Section 3, the tests are investigated for small sample sizes in

different scenarios of the unit root processes. Conclusions are given in Section 4.

2. Theoretical results

In this section some theoretical results are derived and discussed. Let

yt = ρyt−1 + εt , t = 1, . . . , T , (1)

where |ρ| ≤ 1, y0 = 0 and εt’s are i.i.d. random variables with mean zero and variance σ2.

If ρ = 1, the process (1) is nonstationary in the mean and it is known as random walk or

integrated process of order 1 (I(1)). On the other hand, the bound |ρ| < 1 implies stability

and asymptotic stationarity properties of the process yt.

The type of outliers has quite different impact and properties for models and robust es-

timates. In general, the innovation (IO) and additive outliers are the most common type

of atypical observations discussed in the literature (see, for example, Chen and Liu (1993)).

Under the assumption of IO, the least squares estimates of ρ are consistent even when the

error in the model is not Gaussian but with a finite variance. As is well-known, AO are

known to deteriorate more the estimator than IO. In the presence of AO, the least squares

estimates not only lack robustness in terms of variability but also suffer from bias problems

(see, for example, Denby and Martin (1979) and Franses and Haldrup (1994)). In the case of

unit root model (I(1)), the AO provokes a spurious model estimation by indicating that the

process has stationary roots.

The model contaminated by additive outliers is defined here as

zt = yt + θδt , t = 1, . . . , T , (2)

where θ is the magnitude of the outliers (fixed and unknown parameter), δt’s are i.i.d. random

variables, with variance σ2
δ , such that P(δt = 1) = P(δt = −1) = π/2 and P(δt = 0) = 1 − π,

where π is in (0, 1). It is assumed here that the random variables δt’s are independent of yt’s.

The terms θδt in (2) are called effects rather than errors since it causes an immediate and

one-shot effect on the observed series. As is discussed in the literature, the AO seems to be
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a more appropriate descriptor of non repetitive events (see, for example, Denby and Martin

(1979) and Franses and Haldrup (1994)).

In the sequel, the asymptotic behavior of two different unit-root tests under the null hy-

pothesis “ρ = 1” is discussed when the process is contaminated with AO.

2.1. Dickey-Fuller test under outliers. Following the regression defined in (2), the least

square estimates is

ρ̂DF − 1 =

∑T
t=1 zt−1∆zt
∑T

t=1 z
2
t−1

, (3)

where ∆zt = zt − zt−1. Under the null hypothesis (H0): “ρ = 1”, the DF test statistics and

their limiting distributions are given as follows

T (ρ̂DF − 1) = T

∑T
t=1 zt−1∆zt
∑T

t=1 z
2
t−1

, (4)

and

τ̂DF =
ρ̂DF − 1

σ̂DF

(

∑T
t=1 z

2
t−1

)−1/2
, (5)

where σ̂2
DF = T−1

∑T
t=1(∆zt − (ρ̂DF − 1)zt−1)

2.

Theorem 1. Assume that (zt)1≤t≤T are given by (2), then when ρ = 1,

T (ρ̂DF − 1)
d−→ W (1)2 − 1

2
∫ 1
0 W (r)2dr

−
(

θ

σ

)2 π
∫ 1
0 W (r)2dr

, as T → ∞ , (6)

τ̂DF

d−→ [1 + 2(θ/σ)2π]−1/2











W (1)2 − 1

2
(

∫ 1
0 W (r)2dr

)1/2
− (θ/σ)2 π
(

∫ 1
0 W (r)2dr

)1/2











, as T → ∞ , (7)

where
d−→ denotes the convergence in distribution and where {W (r), r ∈ [0, 1]} denotes the

standard Brownian motion.

The proof of Theorem 1 is given in Franses and Haldrup (1994). We have also written the

proof with full details and it is available upon request. The standard DF tests are a particular

case of (6) and (7) when either θ = 0 or π = 0. As argued by Franses and Haldrup (1994) and

also discussed here, for θ 6= 0, the limiting distributions of the tests depend on the parameter

θ and, therefore, the behavior of the test distributions will be shifted to the left side according

to the size of θ and, also, to the probability of the occurrence of outliers. This translation will

inflate the size of the test by leading to reject (H0) too often in favor of a spurious stationary

solution. Based on these properties, the DF test under a suspicion of outliers in the data

should be avoided (see Franses and Haldrup (1994)).
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2.2. Breitung-Gouriéroux test. The Breitung-Gouriéroux’s statistics (Breitung and Gouriéroux

(1997)) consists in replacing the first difference of the observations (∆yt)1≤t≤T by their ranks

(rT,t) in the Dickey-Fuller test statistics. Then, by using the same computations as those

used in Fotopoulos and Ahn (2003), the unit root tests can be written as follows

T (ρ̂BG − 1) = T

∑T
t=2

(

rT,t − T+1
2

)

{

∑t−1
j=1

(

rT,j − T+1
2

)

}

∑T
t=2

{

∑t−1
j=1

(

rT,j − T+1
2

)

}2 , (8)

τ̂BG =
ρ̂BG − 1

σ̂BG





T
∑

t=2







t−1
∑

j=1

(

rT,j −
T + 1

2

)







2



1/2

, (9)

where

σ̂2
BG =

1

T − 2

T
∑

t=2







t
∑

j=1

(

rT,j −
T + 1

2

)

− ρ̂BG

t−1
∑

j=1

(

rT,j −
T + 1

2

)







2

. (10)

Contrary to the limiting distributions of DF tests, it is proved in the following theorem

that the limiting distribution of BG test statistics are outliers-free.

Theorem 2. Assume that (zt)1≤t≤T are given by (2), then when ρ = 1,

T (ρ̂BG − 1)
d−→ − 1

2
∫ 1
0 B(r)2dr

, as T → ∞ , (11)

τ̂BG

d−→ − 1

2
{

∫ 1
0 B(r)2dr

}1/2
, as T → ∞ , (12)

where {B(r), r ∈ [0, 1]} denotes the standard Brownian bridge, ρ̂BG and τ̂BG are defined in

(8) and (9), respectively, rT,t denoting the rank of (∆zt)1≤t≤T .

The proof of Theorem 2 is given in Section 5. From Theorem 2, it can be seen that the

statistic (11) has the same order as in (6). It can also be observed that the limiting dis-

tributions of the BG statistics are always negative. This implies that the estimate of ρ is

asymptotically smaller than 1 and this particular problem was seen with some negative crit-

icism by Fotopoulos and Ahn (2003). As an alternative form to overcome this, the authors

investigated and suggested the statistics given by Granger and Hallman (1991)(GH). How-

ever, as will be seen in the simulation section 3, the empirical distribution of this statistic

carries the same problem as the DF tests when the data has outliers, that is, the empirical

results indicate that its limiting distribution also depends on the parameter θ. This problem

motivated the dedication of this paper to the study of the theoretical properties of the BG

statistics under the presence of additive outliers.
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3. Small-sample properties

The BG test along with the standard DF and GH tests are applied to unit root processes

under the presence of AO with the aim to analyze their performances for finite sample sizes.

This empirical investigation will give a better understanding of whether or not the outliers

can affect the size of the tests and if it does, how.

For this objective, samples following Equations 1 and 2, where the εt’s are i.i.d. Gaussian

random variables with unit variance, were simulated according to the following scenarios:

time series with small and large sample sizes and different outlier magnitudes with fixed

probability occurrences of π. The empirical rejection rates of the null hypothesis of unit root

are based on 10,000 replications. From now on, the nominal level of the tests is 5%. Table

1 displays the size of the tests without (θ = 0) and under (θ 6= 0) outliers in the data with

π = 0.01. The results for π = 0.05 are available upon request. The sizes of the tests are also

investigated under a fixed number of outliers Tπ = 1 and n = 50, 400 (the results are in Table

2). Other cases such as Tπ = 2 and n = 100, 200, 1000 displayed similar conclusions and are

available upon request.

Table 1. Rejection rates of H0 : ρ = 1, with π = 0.01

sample sizes Tests Empirical critical points θ = 0 θ = 3 θ = 5 θ = 7 θ = 10

T = 50 τ̂DF −1.95 0.0462 0.0723 0.1067 0.1550 0.2125

T (ρ̂DF − 1) −7.70 0.0443 0.0707 0.1078 0.1563 0.2149

τ̂GH −1.75 0.0468 0.0449 0.0504 0.0597 0.0546

T (ρ̂GH − 1) −3.82 0.0550 0.0733 0.0932 0.1073 0.1088

τ̂BG −2.66 0.0492 0.0636 0.0585 0.0564 0.0602

T (ρ̂BG − 1) −12.38 0.0517 0.0602 0.0614 0.0601 0.0641

T = 100 τ̂DF −1.95 0.0494 0.0709 0.1185 0.1705 0.2549

T (ρ̂DF − 1) −7.90 0.0492 0.0711 0.1183 0.1723 0.2591

τ̂GH −1.76 0.0497 0.0570 0.0685 0.0758 0.0880

T (ρ̂GH − 1) −4.20 0.0548 0.0774 0.1021 0.1355 0.1569

τ̂BG −2.64 0.0519 0.0533 0.0619 0.0636 0.0604

T (ρ̂BG − 1) −13.04 0.0541 0.0568 0.0635 0.0650 0.0620

T = 200 τ̂DF −1.95 0.0453 0.0741 0.1080 0.1752 0.2729

T (ρ̂DF − 1) −7.90 0.0462 0.0754 0.1117 0.1819 0.2835

τ̂GH −1.77 0.0460 0.0603 0.0740 0.1042 0.1282

T (ρ̂GH − 1) −4.49 0.0493 0.0811 0.1148 0.1592 0.2161

τ̂BG −2.63 0.0462 0.0587 0.0563 0.0594 0.0612

T (ρ̂BG − 1) −13.31 0.0481 0.0598 0.0577 0.0614 0.0638

T = 400 τ̂DF −1.95 0.0508 0.0741 0.1132 0.1749 0.2958

T (ρ̂DF − 1) −8.00 0.0535 0.0775 0.1195 0.1840 0.3080

τ̂GH −1.77 0.0484 0.0577 0.0928 0.1281 0.1953

T (ρ̂GH − 1) −4.67 0.0517 0.0754 0.1268 0.1932 0.2900

τ̂BG −2.61 0.0500 0.0637 0.0695 0.0622 0.0639

T (ρ̂BG − 1) −13.40 0.0500 0.0643 0.0698 0.0623 0.0646

T = 1000 τ̂DF −1.95 0.0463 0.0751 0.1202 0.1746 0.2930

T (ρ̂DF − 1) −8.00 0.0476 0.0771 0.1220 0.1800 0.3044

τ̂GH −1.77 0.0507 0.0701 0.1038 0.1663 0.2749

T (ρ̂GH − 1) −4.86 0.0483 0.0816 0.1407 0.2279 0.3664

τ̂BG −2.62 0.0481 0.0618 0.0597 0.0600 0.0582

T (ρ̂BG − 1) −13.64 0.0481 0.0619 0.0598 0.0599 0.0584
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It is well-known that the Ordinary Least Square estimator is sensitive to the occurrence of

outliers in the data. This sensitivity is inherited by the DF-test as is observed in the table.

The empirical size of DF test is inflated due to the sizes of θ and T , and this leads to reject a

unit root too often indicating a spurious stationary. This confirms the analytical results given

in Theorem 1 and also in Franses and Haldrup (1994). In contrast to the DF test, the rank

tests are much less sensitive to additive outliers. Regardless of the sample size and magnitude

of the outliers, the results in Table 1 show that the sizes of the tests based on the BG method

do not fluctuate too much. They are always near to 5%. However, the GH approach does not

always guarantee this empirical property. This test is also sensitive to outliers, but with less

impact from the effect of the magnitude and the sample size compared with DF test.
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Figure 1. Empirical densities of τ̂GH and T (ρ̂GH − 1) for different values of

θ, T = 200 and π = 0.01.

Figures 1 and 2 give the empirical densities of the GH and BG tests, respectively, for

T = 200. The density of GH test shifts to the left with respect to the distribution of uncon-

taminated data according to the sizes of θ. The density of DF displays similar behaviour and

it is available upon request. On the other hand, the empirical distributions of BG shows to

be very similar regardless of the size of θ which confirm the results in Table 1 that this test

has an approximate constant size under a variety of contaminations.

As previously stated, Theorem 2 shows that the asymptotical distributions of BG tests do

not depend on the size of θ. However, this outlier-free property does not always hold for finite

sample sizes. As an example of the size distortions of the tests, these quantities are plotted in

Figure 3 (a) for T and θ fixed and π varying from 0(0.01) to 0.05. It turns out that BG test

also shows to have the same problems as DF and GH tests, but it is less severe. It is obvious

that the sizes of DF and GH tests deteriorate even more with growing θ and T , which were

expected results.
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Figure 2. Empirical densities of τ̂BG and T (ρ̂BG − 1) for different values of

θ, T = 200 and π = 0.01.
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Figure 3. (a) Size distortions of the tests for different π, T = 200 and θ = 5;

(b) Empirical size-adjusted powers, T = 100, θ = 3 and π = 0.01

Table 2 displays the sizes of the tests for fixed outlier numbers Tπ = 1, n = 50, 400. The

effects on the size of the tests do not become serious by the increasing of the sample size, that

is, size distortions are less pronounced for all tests. Results for n = 100, 200, 1000 presented

similar conclusions and are available upon request.

Based on the analytical and empirical properties of the tests discussed here, a general

conclusion is that the DF test under a suspicion of outliers in the data should be avoided,

see also Franses and Haldrup (1994). The rank test based on GH is somewhat sensitive to
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Table 2. Rejection rates of H0 : ρ = 1, setting Tπ = 1

sample sizes θ = 0 θ = 3 θ = 5 θ = 7 θ = 10

T = 50 0.0497 0.0946 0.1650 0.2436 0.3475

0.0463 0.0935 0.1681 0.2440 0.3536

0.0508 0.0586 0.0704 0.0798 0.0881

0.0539 0.0979 0.1374 0.2440 0.1847

0.0522 0.0680 0.0728 0.0720 0.0729

0.0547 0.0716 0.0761 0.0754 0.0766

T = 400 0.0474 0.0533 0.0648 0.0873 0.1156

0.0480 0.0544 0.0666 0.0867 0.1185

0.0514 0.0488 0.0538 0.0663 0.0776

0.0532 0.0570 0.0661 0.0821 0.1067

0.0493 0.0553 0.0536 0.0597 0.0548

0.0494 0.0555 0.0540 0.0597 0.0551

outliers as the DF test is. Hence, caution also has to be taken when using this test under

data contaminations for small sample sizes. Although the BG test also presented some size

distortions this test seems to be an alternative unit root test to be used in most of scenarios

discussed in this paper.

The empirical powers of the tests were also considered in the scenario of unit root against

the alternative of stationary AR processes, but with outlier contaminations. Since the unit

root tests presented size distortions under outliers in the data, their empirical powers prop-

erties were obtained under size-adjusted power which is not a realistic power in practical

situations (see also Lucas (1995), page 165). Figure 3 (b) gives some insights of the lower

size-adjusted power of the rank tests against DF test. Other cases are available upon re-

quest. In all case considered, the results were not surprising by showing that the powers

of the rank tests were inferior to the DF test which are somewhat in accordance with the

one discussed in Fotopoulos and Ahn (2003), for no outlier contamination cases (see also

(Granger and Hallman, 1991, p. 217)).

4. Conclusions

In this paper robust unit root tests based on ranks, initially suggested in Granger & Hallman

(1991) and considered in Fotopoulos & Ahn (2003), are studied theoretically and empirically

underlying additive outliers in the level of non stationary time series by complementing the

findings of the previous works. In this context, the analytical results show that the limiting

distribution of the Dickey-Fuller rank test based on the ranks of ∆Yt is outlier free in contrast

with the standard DF test which depends on the magnitude of outliers. The limiting distri-

bution of this test will be shifted to the left and, in consequence, the null hypothesis of unit

root will be rejected too often. These theoretical findings were closely mimicked by the Monte

Carlo experiments. Samples from non stationary processes were generated under different sce-

narios of outlier contaminations. In the simulation study, the Granger and Hallman (1991)

test was also considered and, equivalently to DF unit root tests, it showed to be sensitive to
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AO contaminations, but with less severity. The general conclusion is that, in practical situa-

tions where there would be a suspicion of additive outlier, the DF and Granger and Hallman

(1991) unit root tests should be avoided, however, the BG approach can still be used.
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5. Proofs

5.1. Proof of Theorem 2. Let us start by proving (11). Let us first prove that the numerator

of (8) is not random but is just a fixed function of T .

T
∑

t=2







(

rT,t −
T + 1

2

) t−1
∑

j=1

(

rT,j −
T + 1

2

)







=
∑

1≤j<t≤T

(

rT,t −
T + 1

2

)(

rT,j −
T + 1

2

)

=

[

∑T
j=1

(

rT,j − T+1
2

)

]2
−∑T

j=1

(

rT,j − T+1
2

)2

2

= −1

2

T
∑

j=1

r2T,j +
T + 1

2





T
∑

j=1

rT,j



− T

2

(

T + 1

2

)2

= −T (T + 1)(T − 1)

24
, (13)

where we used that
∑T

j=1(rT,j − (T + 1)/2) = 0 and that
∑T

j=1 r
2
T,j = T (T + 1)(2T + 1)/6.

By (13), studying the asymptotic behavior of (11) amounts to studying the following quan-

tity

1

T 4

T
∑

t=2







t−1
∑

j=1

(

rT,j −
T + 1

2

)







2

=
1

T 4

T
∑

t=2







t−1
∑

j=1

[(

T
∑

k=1

1{∆zk≤∆zj}

)

− T + 1

2

]







2

=
1

T

T
∑

t=2







1√
T

t−1
∑

j=1

(

FT (ζj)−
T + 1

2T

)







2

, (14)

where FT (x) = T−1
∑T

t=1 1{ζt≤x}, where

ζt = ∆zt = εt + θ(δt − δt−1) . (15)

Let us now prove that






1√
T

[Tu]
∑

i=1

(

FT (ζi)−
T + 1

2T

)

, u ∈ [0, 1]







d
=⇒ {B(u), u ∈ [0, 1]} , as T → ∞ , (16)
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where [x] denotes the integer part of x, {B(u), u ∈ [0, 1]} denotes the Brownian bridge and
d

=⇒ denotes here the weak convergence in the space of cadlag functions of [0, 1] denoted

D([0, 1]) and equipped with the topology of uniform convergence. Splitting
∑T

j=1 into
∑[Tu]

j=1

and
∑T

j=[Tu]+1, we get

1√
T

[Tu]
∑

i=1

(

FT (ζi)−
T + 1

2T

)

=
1

T 3/2

[Tu]
∑

i=1

T
∑

j=1

(

1{ζj≤ζi} −
T + 1

2T

)

=
1

T 3/2

[Tu]
∑

i=1







T
∑

j=1

(

1{ζj≤ζi} −
1

2

)







− [Tu]

2T 3/2

=
1

T 3/2

[Tu]
∑

i=1







[Tu]
∑

j=1

(

1{ζj≤ζi} −
1

2

)







+
1

T 3/2

[Tu]
∑

i=1







T
∑

j=[Tu]+1

(

1{ζj≤ζi} −
1

2

)







− [Tu]

2T 3/2
. (17)

Let f(x, y) = 1{x≤y} − 1/2. Since f(y, x) = −f(x, y), when x 6= y, we get that the first term

in the r.h.s of (17) is equal to

1

T 3/2

[Tu]
∑

i=1







[Tu]
∑

j=1

(

1{ζj≤ζi} −
1

2

)







=
1

T 3/2

[Tu]
∑

i=1

(

1{ζi≤ζi} −
1

2

)

=
[Tu]

2T 3/2
. (18)

Thus,

1√
T

[Tu]
∑

i=1

(

FT (ζi)−
T + 1

2T

)

=
1

T 3/2

[Tu]
∑

i=1







T
∑

j=[Tu]+1

(

1{ζj≤ζi} −
1

2

)







. (19)

Let h(x, y) = 1{x≤y}. By using the Hoeffding’s decomposition, we get that

1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

h(ζj , ζi)−
1

2

)

=
1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

F (ζi)−
1

2

)

− 1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

F (ζj)−
1

2

)

+
1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

h(ζj , ζi)− F (ζi) + F (ζj)−
1

2

)

,

(20)

F denoting the c.d.f of (ζt). Observe that since εt has a continuous c.d.f it is also the case of

the c.d.f of ζt.

Let us now study the behavior of the first two terms in the r.h.s of (20):

T − [Tu]

T 3/2

[Tu]
∑

i=1

(

F (ζi)−
1

2

)

− [Tu]

T 3/2

T
∑

j=[Tu]+1

(

F (ζj)−
1

2

)

= XT,u + YT,u .

Observe first that (ζi) is a strictly stationary process since it is defined as the sum of two

strictly stationary processes. It is also a 1-dependent process in the sense of Example 1 p. 167

of Billingsley (1968) and (F (ζi)) has the same properties. By using Theorem 20.1 of Billingsley
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(1968), we get that, as T tends to infinity, {XT,u} d
=⇒ {(1 − u)W (u)}, and that {YT,u} d

=⇒
{u(W (1)−W (u))}, where {W (u)} denotes the Wiener process. Since the process (XT,u, YT,u)

is tight and since for fixed u and s, Cov(XT,u, YT,s) → Cov((1 − u)W (u), s(W (1) −W (s))),

as T → ∞, {(XT,u, YT,u)} d
=⇒ {((1 − u)W (u), u(W (1) −W (u))}.

We deduce from this and Lemma 3 that

1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

h(ζj , ζi)−
1

2

)

d−→ (1−u)W (u)−u(W (1)−W (u)) = W (u)−uW (1) , (21)

which with (19) gives (16).

Let wi = FT (ζi)− (T +1)/(2T ). Using similar arguments as those used in (Hamilton, 1994,

p. 483)

1

T

T
∑

t=2







1√
T

t−1
∑

j=1

(

FT (ζj)−
T + 1

2T

)







2

=
1

T

[

(

w1√
T

)2

+

(

w1 + w2√
T

)2

+ · · ·+
(

w1 + · · ·+ wT−1√
T

)2
]

=

∫ 1

0





1√
T

[Tu]
∑

i=1

wi





2

dt
d−→
∫ 1

0
B(u)2du ,

by the continuous mapping theorem and (16), which concludes the proof of (11).

Lemma 3. Under the assumptions of Theorem 2,

sup
u∈[0,1]

∣

∣

∣

∣

∣

∣

1

T 3/2

[Tu]
∑

i=1

T
∑

j=[Tu]+1

(

1{ζj≤ζi} − F (ζi) + F (ζj)−
1

2

)

∣

∣

∣

∣

∣

∣

= sup
u∈[0,1]

|ZT (u)| = op(1) , as T → ∞ .

(22)

Proof of Lemma 3. Observe that

ZT (u) =
1

T 3/2

[Tu]
∑

i=1

T
∑

j=1

(

1{ζj≤ζi} − F (ζi) + F (ζj)−
1

2

)

− [Tu]

2T 3/2
.

Thus it is enough to prove (22) when ZT (u) is replaced by

RT (u) =
1

T 3/2

[Tu]
∑

i=1

T
∑

j=1

(

1{ζj≤ζi} − F (ζi) + F (ζj)−
1

2

)

.

We want to apply Lemma 5.2 of Borovkova et al. (2001) to {RT (u), t ∈ [0, 1]}. Let us first

prove that for s and u such that 0 ≤ s ≤ u < s+ δ ≤ 1,

RT (u)−RT (s) ≤ |RT (s+ δ)−RT (s)|+ |WT (s+ δ)−WT (s)|+ 2
[T (s+ δ)] − [Ts]√

T
,
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where

WT (u) =
T − [Tu]

T 3/2

[Tu]
∑

i=1

(

F (ζi)−
1

2

)

− [Tu]

T 3/2

T
∑

j=[Tu]+1

(

F (ζj)−
1

2

)

. (23)

Observe that

RT (u)−RT (s) =
1

T 3/2

[Tu]
∑

i=[Ts]+1

T
∑

j=1

(

1{ζj≤ζi} − F (ζi) + F (ζj)−
1

2

)

. (24)

Thus,

(RT (u)−RT (s))−(RT (s+δ)−RT (s)) = − 1

T 3/2

[T (s+δ)]
∑

i=[Tu]+1

T
∑

j=1

(

1{ζj≤ζi} − F (ζi) + F (ζj)−
1

2

)

= − 1

T 3/2

[T (s+δ)]
∑

i=[Tu]+1

T
∑

j=1

(

1{ζj≤ζi} −
1

2

)

+
T

T 3/2

[T (s+δ)]
∑

i=[Tu]+1

(

F (ζi)−
1

2

)

+
[Tu]− [T (s+ δ)]

T 3/2

T
∑

j=1

(

F (ζj)−
1

2

)

.

Using (23),

WT (s+ δ) −WT (s) =
1√
T

[T (s+δ)]
∑

i=[Ts]+1

(

F (ζi)−
1

2

)

+
[Ts]− [T (s+ δ)]

T 3/2

T
∑

j=1

(

F (ζj)−
1

2

)

,

and thus, we get that

(RT (u)−RT (s))− (RT (s+ δ)−RT (s))− (WT (s+ δ) −WT (s))

= − 1

T 3/2

[T (s+δ)]
∑

i=[Tu]+1

T
∑

j=1

(

1{ζj≤ζi} −
1

2

)

− 1√
T

[Tu]
∑

i=[Ts]+1

(

F (ζi)−
1

2

)

+
[Tu]− [Ts]

T 3/2

T
∑

j=1

(

F (ζj)−
1

2

)

≤ 3

2

[T (s+ δ)] − [Ts]√
T

.

Since we can follow the same line of reasoning for RT (s)−RT (u), we get Condition (5.10) of

Lemma 5.2 in Borovkova et al. (2001) with α = 1/2.

Let us now check Condition (5.9) of Lemma 5.2 in Borovkova et al. (2001). Observe that

for 0 ≤ s ≤ u ≤ 1,

WT (u)−WT (s) =
T − ([Tu]− [Ts])

T 3/2

[Tu]
∑

i=[Ts]+1

(

F (ζi)−
1

2

)

+
[Ts]− [Tu]

T 3/2







[Ts]
∑

i=1

(

F (ζi)−
1

2

)

+
T
∑

i=[Tu]+1

(

F (ζi)−
1

2

)







.
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Thus, for some positive constant C1

E[(WT (u)−WT (s))
4] ≤ C1

(T − ([Tu]− [Ts]))4

T 6
E











[Tu]
∑

i=[Ts]+1

(

F (ζi)−
1

2

)







4



+ C1
([Tu]− [Ts])4

T 6
E











[Ts]
∑

i=1

(

F (ζi)−
1

2

)







4



+ C1
([Tu]− [Ts])4

T 6
E











T
∑

i=[Tu]+1

(

F (ζi)−
1

2

)







4

 .

Using that (ζi) is a 1-dependent process and that E[(F (ζi) − 1/2)] = 0, |F (ζi) − 1/2| ≤ 1/2

for all i ≥ 1, there exist positive constants C2 and C3 such that

E[(WT (u)−WT (s))
4] ≤ C2

(T − ([Tu]− [Ts]))4

T 6

{

([Tu]− [Ts]) + ([Tu]− [Ts])2
}

+ C2
([Tu]− [Ts])4

T 6

{

[Ts] + [Ts]2 + (T − [Tu]) + (T − [Tu])2
}

≤ C3

{

([Tu]− [Ts])2

T 2
+

([Tu]− [Ts])

T 2

}

,

which is Condition (5.10) of Lemma 5.2 in Borovkova et al. (2001) with h = 1, g(t) = t and

r = 4.

Let us now check Condition (5.8) of Lemma 5.2 in Borovkova et al. (2001). Using (24), we

get that for 0 ≤ s ≤ u ≤ 1,

E[(RT (u)−RT (s))
2] = E











1

T 3/2

[Tu]
∑

i=[Ts]+1

[Ts]
∑

j=1

Ai,j +
1

T 3/2

[Tu]
∑

i=[Ts]+1

T
∑

j=[Tu]+1

Ai,j +
[Tu]− [Ts]

2T 3/2







2



≤ 3

T 3
E











[Tu]
∑

i=[Ts]+1

[Ts]
∑

j=1

Ai,j







2

+
3

T 3
E











[Tu]
∑

i=[Ts]+1

T
∑

j=[Tu]+1

Ai,j







2

+
3([Tu]− [Ts])2

2T 3
,

where Ai,j = 1{ζj≤ζi} − F (ζi) + F (ζj) − 1/2. Using that (ζi) is a 1-dependent process, that

E(Ai,j) = 0 for all i 6= j and that E(Ai,jAk,ℓ) = 0 as soon as the distances between the

different indices i, j, k, ℓ is larger than 1, there exist positive constants C4, C5 and C6 such

that

E[(RT (u)−RT (s))
2] ≤ C4

([Tu]− [Ts])[Ts]

T 3
+C4

([Tu]− [Ts])(T − [Tu])

T 3
+C5

([Tu]− [Ts])2

T 3

≤ C6
|u− s|

T
≤ C6

|u− s|1−ν

T
,

for some positive ν which gives Condition (5.8) of Lemma 5.2 in Borovkova et al. (2001) with

β = 1 and γ = 1− ν and thus concludes the proof of Lemma 3. �
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