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FUNCTIONAL CENTRAL LIMIT THEOREMS FOR SINGLE-STAGE
SAMPLING DESIGNS

BY HÉLÈNE BOISTARD∗, HENDRIK P. LOPUHAÄ† AND ANNE RUIZ-GAZEN∗

Toulouse School of Economics∗ and Delft University of Technology†

For a joint model-based and design-based inference, we establish func-
tional central limit theorems for the Horvitz–Thompson empirical process
and the Hájek empirical process centered by their finite population mean as
well as by their super-population mean in a survey sampling framework. The
results apply to single-stage unequal probability sampling designs and es-
sentially only require conditions on higher order correlations. We apply our
main results to a Hadamard differentiable statistical functional and illustrate
its limit behavior by means of a computer simulation.

1. Introduction. Functional central limit theorems are well established in
statistics. Much of the theory has been developed for empirical processes of in-
dependent summands. In combination with the functional delta-method, they have
become a very powerful tool for investigating the limit behavior of Hadamard or
Fréchet differentiable statistical functionals (e.g., see [46] or [45] for a rigorous
treatment with several applications).

In survey sampling, results on functional central limit theorems are far from
complete. At the same time, there is a need for such results. For instance, in [22]
the limit distribution of several statistical functionals is investigated, under the as-
sumption that such a limit theorem exists for a design-based empirical process,
whereas in [1] the existence of a functional central limit theorem is assumed, to
perform model-based inference on several Gini indices. Weak convergence of pro-
cesses in combination with the delta method are treated in [8, 9, 21], but these
results are tailor made for specific statistical functionals, and do not apply to the
empirical processes that are typically considered in survey sampling.

Recently, functional central limit theorems for empirical processes in survey
sampling have appeared in the literature. Most of them are concerned with empir-
ical processes indexed by a class of functions; see [16, 42] and [7]. Weak conver-
gence under finite population two-phase stratified sampling, is established in [16]
and [42] for an empirical process indexed by a class of functions, which is com-
parable to our Horvitz–Thompson empirical process in Theorem 3.2. Although
their functional CLT allows general function classes, it only covers sampling de-
signs with equal inclusion probabilities within strata that assume exchangeability
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of the inclusion indicators, such as simple random sampling and Bernoulli sam-
pling. Their approach uses results on the exchangeable weighted bootstrap for em-
pirical processes from [38], as incorporated in [46]. This approach, in particular
the application of Theorem 3.6.13 in [46], seems difficult to extend to more com-
plex sampling designs that go beyond exchangeable inclusion indicators. In [7],
a functional CLT is established, for a variance corrected Horvitz–Thompson em-
pirical process under Poisson sampling. In this case, one deals with a summation
of independent terms, which allows the use of Theorem 2.11.1 from [46]. From
their result, a functional CLT under rejective sampling can then be established for
the design-based Horvitz–Thompson process. This is due to the close connection
between Poisson sampling and rejective sampling. For this reason, the approach
used in [7] seems difficult to extend to other sampling designs.

Empirical processes indexed by a real valued parameter are considered in [19,
48] and [20]. A functional CLT for the Hájek empirical c.d.f. centered around
the super-population mean is formulated in [48], and a similar result is implicitly
conjectured for the Horvitz–Thompson empirical process. Unfortunately, the paper
seems to miss a number of assumptions and the argument establishing Billingsley’s
tightness condition seems incomplete. As a consequence, Assumption 5 in [48]
differs somewhat from our conditions (C2)–(C4). The remaining assumptions in
[48] are comparable to the ones needed for our Theorem 4.3. Conti (2014) and [20]
consider high entropy designs, that is, sampling designs that are close in Hellinger
distance to the rejective sampling design. Functional CLTs are obtained for the
Horvitz–Thompson (see [19]) and Hájek (see [20]) empirical c.d.f.’s both centered
around the finite population mean.

The main purpose of the present paper is to establish functional central limit
theorems for the Horvitz–Thompson and the Hájek empirical distribution func-
tion that apply to general single-stage unequal probability sampling designs. In
the context of weighted likelihood, the Horvitz–Thompson empirical process is
a particular case of the inverse probability weighted empirical process which is
not necessarily the most efficient; see [40]. Its efficiency can be improved by us-
ing estimated weights; see [42]. In the present paper, we do not follow this path
of the literature. We rather focus on the Horvitz–Thompson and the Hájek em-
pirical processes that are related to the Horvitz–Thompson and Hájek distribution
function estimators as defined, for example, in [24]. For design-based inference
about finite population parameters, these empirical distribution functions will be
centered around their population mean. On the other hand, in many situations
involving survey data, one is interested in the corresponding model parameters
(e.g., see [33] and [12]). Recently, Rubin-Bleuer and Schiopu Kratina [41] de-
fined a mathematical framework for joint model-based and design-based inference
through a probability product-space and introduced a general and unified method-
ology for studying the asymptotic properties of model parameter estimators. To
incorporate both types of inferences, we consider the Horvitz–Thompson empir-
ical process and the Hájek empirical process under the super-population model
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described in [41], both centered around their finite population mean as well as
around their super-population mean. Our main results are functional central limit
theorems for both empirical processes indexed by a real valued parameter and
apply to generic sampling schemes. These results are established only requiring
the usual standard assumptions that one encounters in asymptotic theory in sur-
vey sampling. Our approach was inspired by an unpublished manuscript from
Philippe Février and Nicolas Ragache, which was the outcome of an internship
at the French Institut National de la Statistique et des Études Économiques (IN-
SEE) in 2001.

The article is organized as follows. Notation and assumptions are discussed in
Section 2. In particular, we briefly discuss the joint model-based and design-based
inference setting defined in [41]. In Sections 3 and 4, we list the assumptions and
state our main results. Our assumptions essentially concern the inclusion proba-
bilities of the sampling design up to the fourth order and a central limit theorem
(CLT) for the Horvitz–Thompson estimator of a population total for i.i.d. bounded
random variables. Our results allow random inclusion probabilities and are stated
in terms of the design-based expected sample size, but we also formulate more
detailed results in case these quantities are deterministic. In Section 5, we dis-
cuss one specific example: high entropy sampling designs. It turns out that in this
case the conditions used for general single-stage unequal probability sampling de-
signs can be simplified. Another example is that of fixed size sampling designs
with deterministic inclusion probabilities, which is dealt with in Supplement C
in [14].

As an application of our results, in combination with the functional delta-
method, we obtain the limit distribution of the poverty rate in Section 6. This
example is further investigated in Section 7 by means of a simulation. Finally,
in Section 8 we discuss our results in relation to more complex designs. All proofs
are deferred to Section 9 and some tedious technicalities can be found in [14].

2. Notation and assumptions. We adopt the super-population setup as de-
scribed in [41]. Consider a sequence of finite populations (UN), of sizes N =
1,2, . . . . With each population, we associate a set of indices UN = {1,2, . . . ,N}.
Furthermore, for each index i ∈ UN , we have a tuple (yi, zi) ∈ R×R

q
+. We denote

yN = (y1, y2, . . . , yN) ∈ R
N and zN ∈ R

q×N
+ similarly. The vector yN contains the

values of the variable of interest and zN contains information for the sampling de-
sign. We assume that the values in each finite population are realizations of random
variables (Yi,Zi) ∈ R × R

q
+, for i = 1,2, . . . ,N , on a common probability space

(�,F,Pm). Similarly, we denote YN = (Y1, Y2, . . . , YN) ∈ R
N and ZN ∈ R

q×N
+ .

To incorporate the sampling design, a product space is defined as follows. For all
N = 1,2, . . . , let SN = {s : s ⊂ UN } be the collection of subsets of UN and let
AN = σ(SN) be the σ -algebra generated by SN . A sampling design associated to
some sampling scheme is a function P :AN ×R

q×N
+ �→ [0,1], such that:
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(i) for all s ∈ SN , zN �→ P(s, zN) is a Borel-measurable function on R
q×N
+ ,

(ii) for all zN ∈ R
q×N
+ , A �→ P(A, zN) is a probability measure on AN .

Note that for each ω ∈ �, we can define a probability measure A �→ Pd(A,ω) =∑
s∈A P (s,ZN(ω)) on the design space (SN,AN). Corresponding expectations

will be denoted by Ed(·,ω). Next, we define a product probability space that in-
cludes the super-population and the design space, under the premise that sample
selection and the model characteristic are independent given the design variables.
Let (SN ×�,AN ×F) be the product space with probability measure Pd,m defined
on simple rectangles {s} × E ∈ AN × F by

Pd,m

({s} × E
) =

∫
E

P
(
s,ZN(ω)

)
dPm(ω) =

∫
E
Pd

({s},ω)
dPm(ω).

When taking expectations or computing probabilities, we will emphasize whether
this is with respect either to the measure Pd,m associated with the product space
(SN ×�,AN ×F), or the measure Pd associated with the design space (SN,AN),
or the measure Pm associated with the super-population space (�,F).

If ns denotes the size of sample s, then this may depend on the specific sam-
pling design including the values of the design variables Z1(ω), . . . ,ZN(ω). Simi-
larly, the inclusion probabilities may depend on the values of the design variables,
πi(ω) = Ed(ξi,ω) = ∑

s�i P (s,ZN(ω)), where ξi is the indicator 1{s�i}. Instead of
ns , we will consider n = Ed [ns(ω)] = ∑N

i=1 Ed(ξi,ω) = ∑N
i=1 πi(ω). This means

that the inclusion probabilities and the design-based expected sample size may be
random variables on (�,F,Pm). For instance, [7] considers πi = π(Zi), where
the pairs (Yi,Zi) are assumed to be i.i.d. random vectors on �, and [20] considers
πi = nh(Zi)/

∑N
j=1 h(Zj ), for some positive function h.

We first consider the Horvitz–Thompson (HT) empirical processes, obtained
from the HT empirical c.d.f.:

(2.1) F
HT
N (t) = 1

N

N∑
i=1

ξi1{Yi≤t}
πi

, t ∈R.

We will consider the HT empirical process
√

n(FHT
N − FN), obtained by centering

around the empirical c.d.f. FN of Y1, . . . , YN , as well as the HT empirical process√
n(FHT

N − F), obtained by centering around the c.d.f. F of the Yi ’s. A functional
central limit theorem for both processes will be formulated in Section 3. In addi-
tion, we will consider the Hájek empirical c.d.f.:

(2.2) F
HJ
N (t) = 1

N̂

N∑
i=1

ξi1{Yi≤t}
πi

, t ∈ R,

where N̂ = ∑N
i=1 ξi/πi is the HT estimator for the population total N . Functional

central limit theorems for
√

n(FHJ
N − FN) and

√
n(FHJ

N − F) will be provided in
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Section 4. The advantage of our results is that they allow general single-stage un-
equal probability sampling schemes and that we primarily require bounds on the
rate at which higher order correlations tend to zero ω-almost surely, under the
design measure Pd .

3. FCLT’s for the Horvitz–Thompson empirical processes. A functional
central limit theorem for

√
n(FHT

N −FN) and
√

n(FHT
N −F) is obtained by proving

weak convergence of all finite dimensional distributions and tightness. In order to
establish the latter for general single-stage unequal probability sampling schemes,
we impose a number of conditions that involve the sets:

(3.1) Dν,N = {
(i1, i2, . . . , iν) ∈ {1,2, . . . ,N}ν : i1, i2, . . . , iν all different

}
,

for the integers 1 ≤ ν ≤ 4. We assume the following conditions:

(C1) there exist constants K1,K2, such that for all i = 1,2, . . . ,N ,

0 < K1 ≤ Nπi

n
≤ K2 < ∞, ω-a.s.

The upper bound in (C1), which expresses the fact that the πi may not be too
large, is related to convergence of n/N . The reason is that Nπi/n ≤ N/n, so that
an upper bound on Nπi/n is immediate if one requires n/N → λ > 0. This last
condition is imposed by many authors, for example, see [7, 15, 19, 20] among
others. The upper bound in our condition (C1) enables us to allow n/N → 0. The
lower bound in (C1) expresses the fact that πi may not be too small. Sometimes
this is taken care of by imposing πi ≥ π∗ > 0; see, for instance, [7, 15]. It can be
seen that conditions A3–A4 in [20] imply the lower bound in (C1). Details can be
found in Supplement B in [14].

There exists a constant K3 > 0, such that for all N = 1,2, . . . :

(C2) max(i,j)∈D2,N
|Ed(ξi − πi)(ξj − πj )| < K3n/N2,

(C3) max(i,j,k)∈D3,N
|Ed(ξi − πi)(ξj − πj )(ξk − πk)| < K3n

2/N3,
(C4) max(i,j,k,l)∈D4,N

|Ed(ξi − πi)(ξj − πj )(ξk − πk)(ξl − πl)| < K3n
2/N4,

ω-almost surely. These conditions on higher order correlations are commonly used
in the literature on survey sampling in order to derive asymptotic properties of esti-
mators (e.g., see [15], and [17]). Breidt and Opsomer [15] proved that they hold for
simple random sampling without replacement and stratified simple random sam-
pling without replacement, whereas [13] proved that they hold also for rejective
sampling. Lemma 2 from [13] allows us to reformulate the above conditions on
higher order correlations into conditions on higher order inclusion probabilities.

Conditions (C2)–(C4) are primarily used to establish tightness of the random
processes involved. These conditions have been formulated as such, because they
are compactly expressed in terms of higher order correlations. Nevertheless, as one
of the referees pointed out, bounds on maximum correlations may be somewhat
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restrictive, and bounds on the average correlation are perhaps more desirable. For
fixed size sampling designs with inclusion probabilities not depending on ω, this
can be accomplished by adapting the tightness proof; see Supplement C in [14].
Conditions (C2)–(C4) can be simplified enormously when we consider the class
of high entropy sampling designs; see [2, 3, 19, 20]. In this case, conditions on the
rate at which

∑N
i=1 πi(1 − πi) tends to infinity compared to N and n are sufficient

for (C2)–(C4); see Section 5.
To establish the convergence of finite dimensional distributions, for sequences

of bounded i.i.d. random variables V1,V2, . . . on (�,F,Pm), we will need a CLT
for the HT estimator N−1 ∑N

i=1 ξiVi/πi in the design space, conditionally on the
Vi’s. To this end, let S2

N be the (design-based) variance of the HT estimator of the
population mean, that is,

(3.2) S2
N = 1

N2

N∑
i=1

N∑
j=1

πij − πiπj

πiπj

ViVj .

We assume that:

(HT1) Let V1,V2, . . . be a sequence of bounded i.i.d. random variables, not
identical to zero, and such there exists an M > 0, such that |Vi | ≤ M ω-almost
surely, for all i = 1,2, . . . . Suppose that for N sufficiently large, SN > 0 and

1

SN

(
1

N

N∑
i=1

ξiVi

πi

− 1

N

N∑
i=1

Vi

)
→ N(0,1), ω-a.s.,

in distribution under Pd .

Note that (HT1) holds for simple random sampling without replacement if n(N −
n)/N tends to infinity when N tends to infinity (see [44]), as well as for Poisson
sampling under some conditions on the first-order inclusion probabilities (e.g., see
[28]). For rejective sampling, [31] gives a somewhat technical condition that is
sufficient and necessary for (HT1). Other references are [39, 47], among others. In
[3], the CLT is extended to high entropy sampling designs. For this class of sam-
pling designs, simple conditions can be formulated that are sufficient for (HT1);
see Proposition 5.1 in Section 5.

We also need that nS2
N converges for the particular case where the Vi ’s are

random vectors consisting of indicators 1{Yj≤t}.

(HT2) For k ∈ {1,2, . . .}, i = 1,2, . . . , k and t1, t2, . . . , tk ∈ R, define Yt
ik =

(1{Yi≤t1}, . . . ,1{Yi≤tk}). There exists a deterministic matrix �HT
k , such that

(3.3) lim
N→∞

n

N2

N∑
i=1

N∑
j=1

πij − πiπj

πiπj

YikYt
jk = �HT

k , ω-a.s.
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This kind of assumption is quite standard in the literature on survey sampling and
is usually imposed for general random vectors (see, e.g., [23], p. 379, [27], condi-
tion 3 on page 457 or [34], condition C4 on page 1014). It suffices to require (3.3)
for Yt

ik = (1{Yi≤t1}, . . . ,1{Yi≤tk}). Moreover, if (C1)–(C2) hold, then the sequence
in (3.3) is bounded, so that by dominated convergence it follows that

(3.4) �HT
k = lim

N→∞
1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

YikYt
jk

]
.

This might help to get a more tractable expression for �HT
k .

We are now able to formulate our first main result. Let D(R) be the space of
càdlàg functions on R equipped with the Skorohod topology.

THEOREM 3.1. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
empirical c.d.f. FN and let FHT

N be defined in (2.1). Suppose that conditions (C1)–
(C4) and (HT1)–(HT2) hold. Then

√
n(FHT

N − FN) converges weakly in D(R) to
a mean zero Gaussian process GHT with covariance function:

EmG
HT(s)GHT(t) = lim

N→∞
1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

1{Yi≤s}1{Yj≤t}
]

for s, t ∈ R.

Note that Theorem 3.1 allows a random (design-based) expected sample size n

and random inclusion probabilities. The expression of the covariance function of
the limiting Gaussian process is somewhat unsatisfactory. When n and the inclu-
sion probabilities are deterministic, we can obtain a functional CLT with a more
precise expression for EmG

HT(s)GHT(t) under slightly weaker conditions. This is
formulated in the proposition below. Note that with imposing conditions (i)–(ii)
in Proposition 3.1 instead of (3.3), convergence of nS2

N is not necessarily guar-
anteed. However, this is established in Lemma B.1 in [14] under (C1) and (C2).
Finally, we like to emphasize that if we would have imposed (HT2) for any se-
quence Y1,Y2, . . . of bounded random vectors, then (HT2) would have implied
conditions (i)–(ii) in the deterministic setup of Proposition 3.1.

PROPOSITION 3.1. Consider the setting of Theorem 3.1, where n and πi,πij ,
for i, j = 1,2, . . . ,N , are deterministic. Suppose that (C1)–(C4) and (HT1) hold,
but instead of (HT2) assume that there exist constants μπ1, μπ2 ∈R such that:

(i) limN→∞ n
N2

∑N
i=1(

1
πi

− 1) = μπ1,

(ii) limN→∞ n
N2

∑∑
i �=j

πij−πiπj

πiπj
= μπ2.

Then
√

n(FHT
N − FN) converges weakly in D(R) to a mean zero Gaussian process

G
HT with covariance function μπ1F(s ∧ t) + μπ2F(s)F (t), for s, t ∈ R.
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Conditions (i)–(ii) ensure that nS2
N converges to a finite limit (see Lemma B.1

in [14]), from which the limiting covariance structure in Proposition 3.1 can be de-
rived. Condition (i) also appears in [19]. Conditions similar to (ii) appear in [6, 32]
and [26]. When n/N → λ ∈ [0,1], then conditions (i)–(ii) hold with μπ1 = 1 − λ

and μπ2 = λ − 1 for simple random sampling without replacement. For Poisson
sampling, (ii) holds trivially because the trials are independent. For rejective sam-
pling, (i)–(ii) together with n/N → λ ∈ [0,1], can be deduced from the associated
Poisson sampling design. Indeed, suppose that (i) holds for Poisson sampling with
first-order inclusion probabilities p1, . . . , pN , such that

∑N
i=1 pi = n. Then, from

Theorem 1 in [13] it follows that if d = ∑N
i=1 pi(1 − pi) tends to infinity, assump-

tion (i) holds for rejective sampling. Furthermore, if n/N → λ ∈ [0,1] and N/d

has a finite limit, then also (ii) holds for rejective sampling.
Weak convergence of the process

√
n(FHT

N −F), where we center with F instead
of FN , requires a CLT in the super-population space for

(3.5)
√

n

(
1

N

N∑
i=1

ξiVi

πi

− μV

)
where μV = Em(Vi),

for sequences of bounded i.i.d. random variables V1,V2, . . . on (�,F,Pm). Our
approach to establish asymptotic normality of (3.5) is then to decompose as fol-
lows:

(3.6)

√
n

(
1

N

N∑
i=1

ξiVi

πi

− μV

)

= √
n

(
1

N

N∑
i=1

ξiVi

πi

− 1

N

N∑
i=1

Vi

)
+

√
n√
N

× √
N

(
1

N

N∑
i=1

Vi − μV

)
.

Since the Vi’s are i.i.d. and bounded, for the second term on the right-hand side,
by the traditional CLT we immediately obtain

(3.7)
√

N

(
1

N

N∑
i=1

Vi − μV

)
→ N

(
0, σ 2

V

)
,

in distribution under Pm, where σ 2
V denotes the variance of the Vi’s, whereas the

first term on the right-hand side can be handled with (HT1). Breslow and Wellner
(2007) and [42] use a decomposition similar to the one in (3.6). Their approach as-
sumes exchangeable ξi’s and equal inclusion probabilities n/N , which allows the
use of results on exchangeable weighted bootstrap to handle the first term on the
right-hand side of (3.6). Instead, we only require conditions (C2)–(C4) on higher
order correlations for the ξi ’s and allow the πi ’s to vary within certain bounds as
described in (C1). To combine the two separate limits in (3.7) and (HT1), we will
need
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(HT3) n/N → λ ∈ [0,1], ω-a.s.

One often assumes λ ∈ (0,1) (e.g., see [7, 15, 19, 20], among others). We like to
emphasize that convergence of n/N was not needed so far in our setup, because
condition (C1) is used to control terms 1/πi . To determine the precise limit for
(3.6) we do need (HT3), but we allow λ = 0 or λ = 1.

Next, we will use Theorem 5.1(iii) from [41]. The finite dimensional projec-
tions of the processes involved turn out to be related to a particular HT estimator.
In order to have the corresponding design-based variance converging to a strictly
positive constant, we need the following condition:

(HT4) For all k ∈ {1,2, . . .} and t1, t2, . . . , tk ∈ R, the matrix �HT
k in (3.3) is

positive definite.

We are now able to formulate our second main result.

THEOREM 3.2. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
let FHT

N be defined in (2.1). Suppose that conditions (C1)–(C4) and (HT1)–(HT4)
hold. Then

√
n(FHT

N − F) converges weakly in D(R) to a mean zero Gaussian
process GHT

F with covariance function Ed,mG
HT
F (s)GHT

F (t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

1{Yi≤s}1{Yj≤t}
]

+ λ
{
F(s ∧ t) − F(s)F (t)

}
,

for s, t ∈ R.

Note that Theorem 3.2 allows random n and inclusion probabilities. As before,
when the sample size n and inclusion probabilities are deterministic we can obtain
a functional CLT under a simpler condition than (HT4) and with a more detailed
description of the covariance function of the limiting process.

PROPOSITION 3.2. Consider the setting of Theorem 3.2, where n and πi,πij ,
for i, j = 1,2, . . . ,N , are deterministic. Suppose that (C1)–(C4), (HT1) and
(HT3) hold, but instead of (HT2) and (HT4) assume that there exist constants
μπ1 > 0, μπ2 ∈ R such that (i) and (ii) of Proposition 3.1 hold. Then

√
n(FHT

N −F)

converges weakly in D(R) to a mean zero Gaussian process GHT with covariance
function (μπ1 + λ)F (s ∧ t) + (μπ2 − λ)F (s)F (t), for s, t ∈ R.

Since 1/πi ≥ 1, we will always have μπ1 ≥ 0 in condition (i) in Proposition 3.2.
This means that μπ1 > 0 in (i) is not very restrictive. For simple random sampling
without replacement, condition (i) requires λ to be strictly smaller than one.

REMARK 3.1 (High entropy designs). Theorems 3.1 and 3.2 include high en-
tropy sampling designs with random inclusion probabilities, which are considered
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for instance in [7] and [20], whereas Propositions 3.1 and 3.2 include high en-
tropy designs with deterministic inclusion probabilities, for instance considered in
[19]. For such designs, the conditions can be simplified considerably, in particular
(C2)–(C4), see Corollary 5.1(i)–(ii) and Corollary 5.2(i)–(ii) in Section 5.

4. FCLT’s for the Hájek empirical processes. To determine the behavior of
the process

√
n(FHJ

N − FN), it is useful to relate it to the process

(4.1) G
π
N(t) =

√
n

N

N∑
i=1

ξi

πi

(
1{Yi≤t} − F(t)

)
.

We can then write

(4.2)
√

n
{
F

HJ
N (t) − FN(t)

} = YN(t) +
(

N

N̂
− 1

)
G

π
N(t),

where

(4.3) YN(t) =
√

n

N

N∑
i=1

(
ξi

πi

− 1
)(

1{Yi≤t} − F(t)
)
.

As intermediate results, we will first show that the process Gπ
N converges weakly to

a mean zero Gaussian process and that N̂/N → 1 in probability. As a consequence,
the limiting behavior of

√
n(FHJ

N − FN) will be the same as that of YN , which is
an easier process to handle. Instead of (HT2) and (HT4) we now need

(HJ2) For k ∈ {1,2, . . .}, i = 1,2, . . . , k and t1, t2, . . . , tk ∈ R, define Ỹt
ik =

(1{Yi≤t1} − F(t1), . . . ,1{Yi≤tk} − F(tk)). There exists a deterministic matrix �HJ
k ,

such that

(4.4) lim
N→∞

n

N2

N∑
i=1

N∑
j=1

πij − πiπj

πiπj

ỸikỸt
jk = �HJ

k , ω-a.s.

and

(HJ4) For all k ∈ {1,2, . . .} and t1, t2, . . . , tk ∈ R, the matrix �HJ
k in (4.4) is

positive definite.

As in the case of (3.4), if (C1)–(C2) hold, then (HJ2) implies

(4.5) �HJ
k = lim

N→∞
1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

ỸikỸt
jk

]
.

THEOREM 4.1. Let Gπ
N be defined in (4.1) and let N̂ = ∑N

i=1 ξi/πi . Suppose
n → ∞, ω-a.s., and that there exists σ 2

π ≥ 0, such that

(4.6)
n

N2

N∑
i=1

N∑
i=1

πij − πiπj

πiπj

→ σ 2
π , ω-a.s.
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If in addition:

(i) (HT1) hold, then N̂/N → 1 in Pd,m probability.
(ii) (C1)–(C4), (HT1), (HT3), (HJ2) and (HJ4) hold, then G

π
N converges

weakly in D(R) to a mean zero Gaussian process G
π with covariance function

Ed,mG
π(s)Gπ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

(
1{Yi≤s} − F(s)

)(
1{Yi≤t} − F(t)

)]
+ λ

(
F(s ∧ t) − F(s)F (t)

)
, s, t ∈ R.

Note that in view of condition (HT3), the condition n → ∞ is immediate, if
λ > 0. We proceed by establishing weak convergence of

√
n(FHJ

N − FN).

THEOREM 4.2. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
empirical c.d.f. FN and let FHJ

N be defined in (2.2). Suppose n → ∞, ω-a.s., and
that (C1)–(C4), (HT1), (HT3), and (HJ2) hold, as well as condition (4.6). Then√

n(FHJ
N − FN) converges weakly in D(R) to a mean zero Gaussian process G

HJ

with covariance function Ed,mG
HJ(s)GHJ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

(
1{Yi≤s} − F(s)

)(
1{Yi≤t} − F(t)

)]
,

for s, t ∈ R.

Note that we do not need condition (HJ4) in Theorem 4.2. This condition is only
needed in Theorem 4.1 to establish the limit distribution of the finite dimensional
projections of the process Gπ

N . For Theorem 4.2, we only need that Gπ
N is tight.

As before, below we obtain a functional CLT for
√

n(FHJ
N − FN) in the case

that n and the inclusion probabilities are deterministic. Similar to the remark we
made after Theorem 3.1, note that if we would have imposed (HJ2) for any se-
quence of bounded random vectors, then this would imply conditions (i)–(ii) of
Proposition 3.1, which can then be left out in Theorem 4.1.

PROPOSITION 4.1. Consider the setting of Theorem 4.2, where n and πi,πij ,
for i, j = 1,2, . . . ,N , are deterministic. Suppose n → ∞ and that (C1)–(C4),
(HT1) and (HT3) hold, as well as conditions (i)–(ii) from Proposition 3.1. Then√

n(FHJ
N − FN) converges weakly in D(R) to a mean zero Gaussian process GHT

with covariance function μπ1(F (s ∧ t) − F(s)F (t)), for s, t ∈ R.

Finally, we consider
√

n(FHJ
N − F). Again, we relate this process to (4.1) and

write
√

n
(
F

HJ
N (t) − F(t)

) = N

N̂
G

π
N(t).(4.7)
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Since N̂/N → 1 in probability, this implies that
√

n(FHJ
N − F) has the same limit-

ing behavior as Gπ
N .

THEOREM 4.3. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
let FHJ

N be defined in (2.2). Suppose n → ∞, ω-a.s., and that (C1)–(C4), (HT1),
(HT3), (HJ2) and (HJ4) hold, as well as condition (4.6). Then

√
n(FHJ

N − F) con-
verges weakly in D(R) to a mean zero Gaussian process G

HJ
F with covariance

function Ed,mG
π(s)Gπ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

(
1{Yi≤s} − F(s)

)(
1{Yi≤t} − F(t)

)]
+ λ

(
F(s ∧ t) − F(s)F (t)

)
, s, t ∈ R.

With Theorem 4.3 we recover Theorem 1 in [48]. Our assumptions are com-
parable to those in [48], although this paper seems to miss a condition on the
convergence of the variance, such as our condition (HJ2).

We conclude this section by establishing a functional CLT for
√

n(FHJ
N − F) in

the case of deterministic n and inclusion probabilities.

PROPOSITION 4.2. Consider the setting of Theorem 4.3, where n and πi,πij ,
for i, j = 1,2, . . . ,N , are deterministic. Suppose n → ∞ and that (C1)–(C4),
(HT1) and (HT3) hold, as well as conditions (i)–(ii) from Proposition 3.2. Then√

n(FHJ
N − F) converges weakly in D(R) to a mean zero Gaussian process G

HJ

with covariance function (μπ1 + λ)(F (s ∧ t) − F(s)F (t)), for s, t ∈ R.

REMARK 4.1 (High entropy designs). Remark 3.1 about simplifying the con-
ditions for the Horvitz–Thompson empirical process in the case of high entropy
designs, also holds for the Hájek empirical process. See Corollary 5.1(iii)–(iv) and
Corollary 5.2(iii)–(iv) in Section 5.

5. High entropy designs. For the sake of brevity, let us suppress the possible
dependence of a sampling design on ZN and write P(·) = P(·,ZN). The entropy
of a sampling design P is defined as

H(P ) = − ∑
s∈SN

P (s)Log
[
P(s)

]
,

where Log denotes the Napierian logarithm, and define 0 Log[0] = 0. The entropy
H(P ) represents the average amount of information contained in design P (e.g.,
see [3]). Given inclusion probabilities π1, . . . , πN , the rejective sampling design,
denoted by R (see [30, 31]), is known to maximize the entropy among all fixed size
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sampling designs subject to the constraint that the first order inclusion probabilities
are equal to π1, . . . , πN . This sampling design is defined by

R(s) = θ
∏
i∈s

αi with αi = η
pi

1 − pi

,

where θ is such that
∑

s∈SN
R(s) = 1, η is such that

∑N
i=1 αi = 1, and the

0 < pi < 1 are such that
∑N

i=1 pi = n and are chosen to produce the first order
inclusion probabilities πi . It is shown in [25] that for any given set of inclusion
probabilities π1, . . . , πN , there always exists a unique set of pi ’s such that the
first-order inclusion probabilities corresponding to R are exactly equal to the πi ’s.

An important class is formed by sampling designs P that are close to a rejective
sampling design R. Berger [3] considers such a class where the divergence of P

from R is measured by

(5.1) D(P ‖ R) = ∑
s∈SN

P (s)Log
[
P(s)

R(s)

]
.

In this subsection, we will consider high entropy designs P , that is, sampling de-
signs P for which there exists a rejective sampling design R such that

(A1) D(P ‖ R) → 0, as N → ∞.

A similar class is considered in [19, 20], where the Hellinger distance between
P and R is used instead of (5.1). Sampling designs satisfying (A1) are investi-
gated in [3]. Examples are Rao–Sampford sampling and successive sampling; see
Theorems 6 and 7 in [3].

For high entropy designs P satisfying (A1), the conditions imposed in Sec-
tions 3 and 4 can be simplified considerably. Essentially, the results in these sec-
tions can be obtained by conditions on the rate at which

(5.2) dN =
N∑

i=1

πi(1 − πi)

tends to infinity, compared to N and n. First of all, condition (HT1) can be estab-
lished under mild conditions.

PROPOSITION 5.1. Let P be a high entropy design satisfying (A1) with in-
clusion probabilities π1, . . . , πN . Let dN and S2

N be defined by (5.2) and (3.2).
Suppose that (C1) holds and that the following conditions hold ω-almost surely:

(B1) n/dN = O(1), as N → ∞;
(B2) N/d2

N → 0, as N → ∞;
(B3) n2S2

N → ∞, as N → ∞.

Then (HT1) is satisfied.
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Conditions (B1)–(B2) are immediate, if dN/N → d > 0 and n/N → λ > 0.
Moreover, nS2

N typically converges almost surely to some σ 2 ≥ 0, so that (B3) is
immediate as soon as σ 2 > 0 and (B1) holds.

The following corollary covers the results from Sections 3 and 4 for high en-
tropy designs with inclusion probabilities that possibly depend on ω. Such designs
are considered for instance in [7] and [20].

COROLLARY 5.1. Let P be a high entropy design satisfying (A1) with inclu-
sion probabilities π1, . . . , πN , and let dN be defined by (5.2). Suppose that con-
ditions (C1) and (HT1) hold. Furthermore, suppose that the following conditions
hold ω-almost surely:

(A2) dN → ∞, as N → ∞;
(A3) n/dN = O(1), as N → ∞;
(A4) N2/(ndN) = O(1), as N → ∞.

Then:

(i) if (HT2) is satisfied, then the conclusion of Theorem 3.1 holds;
(ii) if (HT2)–(HT4) are satisfied, then the conclusion of Theorem 3.2 holds;

(iii) if (HT3), (HJ2) are satisfied, and ω-almost surely,

(A5) n(N − n)2/(N2dN) → α, as N → ∞,

then the conclusion of Theorem 4.2 holds;
(iv) if (HT3), (HJ2), (HJ4) and (A5) are satisfied, then the conclusion of The-

orem 4.3 holds.

As it turns out, for the particular setting of high entropy designs, conditions
(A2)–(A4) together with (C1) are sufficient for (C2)–(C4), whereas (A5) implies
condition (4.6). The conditions in Corollary 5.1 have been formulated as weakly as
possible. They are implied by the usual conditions that one finds in the literature.
For instance, when N/dN = O(1) (e.g., see [13]) and n/N → λ > 0, then (A2)–
(A4) are immediate. Part (iii) in Corollary 5.1 is similar to Proposition 1 in [20],
where the Hellinger distance between P and R is used instead of (5.1). It can
be seen that the conditions in [20] are sufficient for our conditions (B1)–(B2) in
Proposition 5.1, (C1), (A1)–(A5), (HT3) and the existence of the almost sure limits
in (HT2) and (HJ2).

Things become even easier when the high entropy design has inclusion proba-
bilities that do not depend on ω.

COROLLARY 5.2. Let P be a high entropy design satisfying (A1)–(A5) with
deterministic inclusion probabilities π1, . . . , πN . Suppose that conditions (C1),
(HT1) and limN→∞(n/N2)

∑N
i=1(π

−1
i − 1) = μπ1 hold. Then:

(i) the conclusion of Proposition 3.1 holds;
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(ii) if (HT3) is satisfied and μπ1 > 0, then the conclusion of Proposition 3.2
holds;

(iii) if (HT3) is satisfied, then the conclusion of Proposition 4.1 holds;
(iv) if (HT3) is satisfied and μπ1 > 0, then the conclusion of Proposition 4.2

holds.

As before, conditions (A2)–(A4) together with (C1) are sufficient for (C2)–
(C4), whereas (A5) implies condition (ii) of Propositions 3.1 and 3.2. Part (i) in
Corollary 5.2 is similar to Proposition 1 in [19], where the Hellinger distance be-
tween P and R is used instead of (5.1). It can be seen that the conditions in [19]
are sufficient for (B1)–(B2) in Proposition 5.1, (A1)–(A5), (HT3) and (i).

6. Hadamard-differentiable functionals. Theorem 4.3 provides an elegant
means to study the limit behavior of estimators that can be described as φ(FHJ

N ),
where φ is a Hadamard-differentiable functional. Given such a φ, the functional
delta-method, for example, see Theorems 3.9.4 and 3.9.5 in [46] or Theorem 20.8
in [45], enables one to establish the limit distribution of φ(FHJ

N ). Similarly, this
holds for Theorems 3.1, 3.2 and 4.2, or Propositions 3.1, 3.2, 4.1 and 4.2 in the
special case of deterministic n and inclusion probabilities.

We illustrate this by discussing the poverty rate. This indicator has recently
been revisited by [29] and [36]. This example has also been discussed by [22], but
under the assumption of weak convergence of

√
n(FHJ

N − FN) to some centered
continuous Gaussian process. Note that this assumption is now covered by our
Theorem 4.2 and Proposition 4.1. Let Dφ ⊂ D(R) consist of F ∈ D(R) that are
nondecreasing. Then for F ∈Dφ , the poverty rate is defined as

(6.1) φ(F ) = F
(
βF−1(α)

)
for fixed 0 < α,β < 1, where F−1(α) = inf{t : F(t) ≥ α}. Typical choices are
α = 0.5 and β = 0.5 (INSEE) or β = 0.6 (EUROSTAT). Its Hadamard derivative
is given by

(6.2) φ′
F (h) = −β

f (βF−1(α))

f (F−1(α))
h
(
F−1(α)

) + h
(
βF−1(α)

)
.

See Supplement B in [14] for details. We then have the following corollaries for
the Horvitz–Thompson estimator φ(FHT

N ) and the Hájek estimator φ(FHJ
N ) for the

poverty rate φ(F ).

COROLLARY 6.1. Let φ be defined by (6.1) and suppose that the conditions of
Proposition 3.2 hold. Then, if F is differentiable at F−1(α), the random variable√

n(φ(FHT
N ) − φ(F )) converges in distribution to a mean zero normal random
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variable with variance

(6.3)

σ 2
HT,α,β = β2 f (βF−1(α))2

f (F−1(α))2

(
γπ1α + γπ2α

2)
+ γπ1φ(F ) + γπ2φ(F )2 − 2β

f (βF−1(α))

f (F−1(α))
φ(F )(γπ1 + γπ2α),

where γπ1 = μπ1 + λ and γπ2 = μπ2 − λ. If in addition n/N → 0, then√
n(φ(FHT

N ) − φ(FN)) converges in distribution to a mean zero normal random
variable with variance σ 2

HT,α,β .

COROLLARY 6.2. Let φ be defined by (6.1) and suppose that the conditions
of Proposition 4.2 hold. Then, if F is differentiable at F−1(α), the random vari-
able

√
n(φ(FHJ

N )−φ(F )) converges in distribution to a mean zero normal random
variable with variance

(6.4)

σ 2
HJ,α,β = β2 f (βF−1(α))2

f (F−1(α))2 γπ1α(1 − α)

+ γπ1φ(F )
(
1 − φ(F )

) − 2β
f (βF−1(α))

f (F−1(α))
φ(F )γπ1(1 − α),

where γπ1 = μπ1 + λ. If in addition n/N → 0, then
√

n(φ(FHJ
N ) − φ(FN)) con-

verges in distribution to a mean zero normal random variable with variance
σ 2

HJ,α,β .

7. Simulation study. The objective of this simulation study is to investigate
the performance of the Horvitz–Thompson (HT) and the Hájek (HJ) estimators for
the poverty rate, as defined in (6.1), at the finite population level and at the super-
population level. The asymptotic results from Corollaries 6.1 and 6.2 are used to
obtain variance estimators whose performance is also assessed in this small study.

Six simulation schemes are implemented with different population sizes and
(design-based) expected sample sizes, namely N = 10,000 and 1000 and n = 500,
100 and 50. The samples are drawn according to three different sampling designs.
The first one is simple random sampling without replacement (SI) with size n.
The second design is Bernoulli sampling (BE) with parameter n/N . The third one
is Poisson sampling (PO) with first-order inclusion probabilities equal to 0.4n/N

for the first half of the population and equal to 1.6n/N for the other half of the
population, where the population is randomly ordered. The first-order inclusion
probabilities are deterministic for the three designs and the sample size ns is fixed
for the SI design, while it is random with respect to the design for the BE and
PO designs. Moreover, the SI and BE designs are equal probability designs, while
PO is an unequal probability design. The results are obtained by replicating NR =
1000 populations. For each population, nR = 1000 samples are drawn according



1744 H. BOISTARD, H. P. LOPUHAÄ AND A. RUIZ-GAZEN

to the different designs. The variable of interest Y is generated for each population
according to an exponential distribution with rate parameter equal to one. For this
distribution and given α and β , the poverty rate has an explicit expression φ(F ) =
1 − exp(β ln(1 − α)). In what follows, α = 0.5 and β = 0.6 and φ(F ) � 0.34.
These are the same values for α and β as considered in [22].

The Horvitz–Thompson estimator and Hájek estimator for φ(F ) or φ(FN) are
denoted by φ̂HT and φ̂HJ, respectively. They are obtained by plugging in the em-
pirical c.d.f.’s FHT

N and F
HJ
N , respectively, for F in expression (6.1). The empirical

quantiles are calculated by using the function wtd.quantile from the R pack-
age Hmisc for the Hájek estimator and by adapting the function for the Horvitz–
Thompson estimator. For the SI sampling design, the two estimators are the same.
The performance of the estimators for the parameters φ(F ) and φ(FN) is evalu-
ated using some Monte Carlo relative bias (RB). This is reported in Table 1. When
estimating the super-population parameter φ(F ), if φ̂ij denotes the estimate (either
φ̂HT or φ̂HJ) for the ith generated population and the j th drawn sample, the Monte
Carlo relative bias of φ̂ in percentages has the following expression:

RBF (φ̂) = 100

NRnR

NR∑
i=1

nR∑
j=1

φ̂ij − φ(F )

φ(F )
.

When estimating the finite population parameter φ(FN), the parameter depends
on the generated population Ni , for each i = 1, . . . ,NR , and will be denoted by
φ(FNi

). The Monte Carlo relative bias of φ̂ is then computed by replacing F by
FNi

in the above expression. Concerning the relative biases reported in Table 1, the

TABLE 1
RB (in %) of the HT and the HJ estimators for the finite population φ(FN) and the

super-population φ(F ) poverty rate parameter

N = 10,000 N = 1000

n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT–HJ φ(FN) −0.17 −0.89 −1.82 −0.05 −0.84 −1.62
φ(F ) −0.20 −0.91 −1.86 −0.18 −0.72 −1.85

BE HT φ(FN) −0.12 −0.66 −1.29 0.01 −0.65 −1.12
φ(F ) −0.15 −0.68 −1.34 −0.12 −0.54 −1.36

HJ φ(FN) −0.17 −0.92 −1.87 −0.04 −0.88 −1.68
φ(F ) −0.20 −0.93 −1.92 −0.17 −0.76 −1.91

PO HT φ(FN) −0.05 −1.05 −2.06 −0.06 −0.30 −0.37
φ(F ) −0.08 −1.07 −2.11 −0.19 −0.19 −0.63

HJ φ(FN) −0.20 −1.27 −2.95 −0.04 −1.08 −1.99
φ(F ) −0.23 −1.28 −3.00 −0.17 −0.97 −2.23
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TABLE 2
RB (in %) for the variance estimator of the HT and the HJ estimators for the poverty rate parameter

N = 10,000 N = 1000

n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT-HJ −2.21 −3.08 −2.97 −2.25 −3.26 −3.00

BE HT −4.15 −5.11 −4.21 −3.31 −5.11 −4.19
HJ −2.22 −3.06 −3.03 −2.26 −3.24 −3.03

PO HT −4.43 −4.96 −3.45 −3.74 −5.72 −4.59
HJ −2.36 −3.43 −3.36 −2.44 −3.75 −4.13

values are small and never exceed 3%. As expected, these values increase when n

decreases. When the centering is relative to φ(FN), the relative bias is in general
somewhat smaller than when centering with φ(F ). This behavior is most promi-
nent when N = 1000 and n = 500, which suggests that the estimates are typically
closer to the population poverty rate φ(FN) than to the model parameter φ(F ).
The Hájek estimator has a larger relative bias than the Horvitz–Thompson esti-
mator in all situations but in particular for the Poisson sampling design when the
size of the population is 1000. Note that all values in Table 1 are negative, which
illustrates the fact that the estimators typically underestimate the population and
model poverty rates.

In Table 2, the estimators of the variance of φ̂HT and φ̂HJ are obtained by plug-
ging in the empirical c.d.f.’s F

HT
N and F

HJ
N , respectively, for F in the expressions

(6.3) and (6.4). To estimate f in the variance of φ̂HJ, we follow [5], who propose
a Hájek-type kernel estimator with a Gaussian kernel function. For the variance of
φ̂HT, we use a corresponding Horvitz–Thompson estimator by replacing N̂ by N .
Based on [43], pages 45–47, we choose b = 0.79Rn

−1/5
s , where R denotes the

interquartile range. This differs from [5], who propose a similar bandwidth of the
order N−1/5. However, this severely underestimates the optimal bandwidth, lead-
ing to large variances of the kernel estimator. Usual bias variance trade-off com-
putations show that the optimal bandwidth is of the order n

−1/5
s .

For the SI sampling design, (6.3) and (6.4) are identical and can be calculated
in an explicit way using the fact that μπ1 + λ = 1 and μπ2 − λ = −1. For the BE
design, μπ1 + λ = 1, whereas for Poisson sampling, the value (n/N2)

∑N
i=1 1/πi

is taken for μπ1 + λ. For these designs, μπ2 − λ = −λ, where we take n/N as the
value of λ.

In order to compute the relative bias of the variance estimates, the asymptotic
variance is taken as reference. This asymptotic variance AV(φ̂) of the estimator φ̂

(either φ̂HT or φ̂HJ) is computed from (6.3) and (6.4). The expressions f (βF−1(α))

and f (F−1(α)) are explicit in the case of an exponential distribution. Furthermore,
for μπ1 + λ and μπ2 − λ we use the same expressions as mentioned above. The
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TABLE 3
Coverage probabilities (in %) for 95% confidence intervals of the HT and the HJ estimators for the

finite population φ(FN) and the super-population φ(F ) poverty rate parameter

N = 10,000 N = 1000

n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT-HJ φ(FN) 95.2 94.4 93.5 98.8 95.1 94.6
φ(F ) 94.6 93.2 92.2 94.7 93.2 92.0

BE HT φ(FN) 94.9 94.3 94.6 98.4 94.8 94.6
φ(F ) 94.4 93.7 94.9 94.6 93.6 94.7

HJ φ(FN) 95.1 94.3 93.9 98.7 94.9 94.2
φ(F ) 94.7 94.2 93.9 94.7 94.2 93.9

PO HT φ(FN) 94.5 94.2 94.3 96.8 94.0 93.6
φ(F ) 94.5 94.0 94.3 94.6 93.6 93.5

HJ φ(FN) 94.8 93.9 93.6 97.2 94.2 93.3
φ(F ) 94.6 93.9 93.6 94.6 93.9 93.2

Monte Carlo relative bias of the variance estimator ÂV(φ̂) in percentages, is de-
fined by

RB
(
ÂV(φ̂)

) = 100

NRnR

NR∑
i=1

nR∑
j=1

ÂV(φ̂ij ) − AV(φ̂)

AV(φ̂)
,

where ÂV(φ̂ij ) denotes the variance estimate for the ith generated population and
the j th drawn sample.

Table 3 gives the Monte Carlo coverage probabilities for a nominal cover-
age probability of 95% for the two parameters φ(FN) and φ(F ), the Horvitz–
Thompson and the Hájek estimators and the different simulation schemes. In gen-
eral, the coverage probabilities are somewhat smaller than 95%, which is due to
the underestimation of the asymptotic variance, as can be seen from Table 2. The
case N = 1000 and n = 500 for φ̂HJ forms an exception, which is probably due
to the fact that in this case λ = n/N is far from zero, so that the limit distribu-
tion of

√
n(φ(FHT

N ) − φ(FN)) and
√

n(φ(FHJ
N ) − φ(FN)) has a larger variance

than the ones reported in Corollaries 6.1 and 6.2. When looking at Table 2, the
relative biases are smaller than 5% when n is 500. The biases are larger for the
Horvitz–Thompson estimator than for the Hájek estimator. Again all relative bi-
ases are negative, which illustrates the fact that the asymptotic variance is typically
underestimated.

8. Discussion. In the Appendix of [35], the author remarks, “To our knowl-
edge there does not exist a general theory on conditions required for the tightness
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and weak convergence of Horvitz–Thompson processes.” One purpose of this pa-
per has been to obtain these type of results in such a way that they are potentially
applicable to a large class of single-stage unequal probability sampling designs.
Conditions (C2)–(C4) play a crucial role in this, as they establish the tightness of
the processes involved. The main motivation for the way they are formulated is
to incorporate single-stage sampling designs which allow the sample size and/or
the inclusion probabilities to depend on ω, which will be the case if they depend
on the auxiliary variables Zi . These conditions trivially hold for simple sampling
designs, but also for rejective sampling, which enables us to obtain weak conver-
gence of the Hájek and Horvitz–Thompson processes under high entropy designs.
Further extensions to more complex designs are beyond the scope of the present
investigation, but we believe that results similar to those described in Sections 3, 4
and 5, would continue to hold under reasonable assumptions.

For instance, multistage sampling designs deserve attention. The recent paper
[18] gives some asymptotic results in the case of simple random sampling without
replacement at the first stage and with arbitrary designs at further stages. Escobar
and Berger (2013) give also some consistency results for a particular two-stage
fixed sample size design. The clusters are drawn using sampling without replace-
ment with a probability proportional to the size design and the secondary units
are drawn using a simple random sampling without replacement within each sam-
pled cluster. This leads to a self-weighted design. Similar designs would be worth
considering in order to generalize our functional limit theorems to multistage sam-
pling.

Stratified sampling is also of importance. Asymptotics in the case of stratified
simple random sampling without replacement is studied in [10], when the number
of strata is bounded and in [34] when the number of strata tends to infinity. More
recently, consistency results are obtained in [4] for large entropy designs when the
number of strata is bounded. It would be of particular interest to generalize our
functional asymptotic results to such stratified designs.

Our results rely on the assumption that the sample selection process and the
super-population model characteristic are independent given the design variables.
It means that the sampling is noninformative ([37]). Our results do not directly gen-
eralize to informative sampling and further research is needed for such sampling
designs. Also functional CLTs for processes corresponding to other estimators,
such as regression and calibration estimators ([23]) deserve attention.

9. Proofs. We will use Theorem 13.5 from [11], which requires convergence
of finite dimensional distributions and a tightness condition (see (13.14) in [11]).
To obtain weak convergence of the finite dimensional distributions, we use con-
dition (HT1) in combination with the Crámer–Wold device; see Lemmas 9.2, 9.4
and 9.6. Details of their proofs can be found in Supplement A in [14].

We will now establish the tightness condition, as stated in the following lemma.



1748 H. BOISTARD, H. P. LOPUHAÄ AND A. RUIZ-GAZEN

LEMMA 9.1. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and em-
pirical c.d.f. FN and let FHT

N be defined according to (2.1). Let XN = √
n(FHT

N −
FN) and suppose that (C1)–(C4) hold. Then there exists a constant K > 0 inde-
pendent of N , such that for any t1, t2 and −∞ < t1 ≤ t ≤ t2 < ∞,

Ed,m

[(
XN(t) −XN(t1)

)2(
XN(t2) −XN(t)

)2] ≤ K
(
F(t2) − F(t1)

)2
.

PROOF. First, note that

XN(t) =
√

n

N

N∑
i=1

(
ξi

πi

− 1
)
1{Yi≤t}.

For the sake of brevity, for −∞ < t1 ≤ t ≤ t2 < ∞, and i = 1,2, . . . ,N , we de-
fine p1 = F(t) − F(t1), p2 = F(t2) − F(t), Ai = 1{t1<Yi≤t}, and Bi = 1{t<Yi≤t2}.
Furthermore, let αi = (ξi −πi)Ai/πi and βi = (ξi −πi)Bi/πi . Then, according to
the fact that p1p2 ≤ (F (t2) − F(t1))

2, due to the monotonicity of F , it suffices to
show

(9.1)
1

N4Ed,m

[
n2

(
N∑

i=1

αi

)2(
N∑

j=1

βj

)2]
≤ Kp1p2.

The expectation on the left-hand side can be decomposed as follows:

(9.2)

N∑
i=1

N∑
k=1

Ed,m

[
n2α2

i β
2
k

] +
N∑

i=1

∑
j �=i

N∑
k=1

Ed,m

[
n2αiαjβ

2
k

]

+
N∑

k=1

∑
l �=k

N∑
i=1

Ed,m

[
n2α2

i βkβl

] +
N∑

i=1

∑
j �=i

N∑
k=1

∑
l �=k

Ed,m

[
n2αiαjβkβl

]
.

Note that by symmetry, sums two and three in (9.2) can be handled similarly, so
that essentially we have to deal with three summations. We consider them one by
one.

First, note that, since 1{t1<Yi≤t}1{t<Yi≤t2} = 0, we will only have nonzero ex-
pectations when {i, j} and {k, l} are disjoint. With (C1), we find

(9.3)

1

N4

N∑
i=1

N∑
k=1

Ed,m

[
n2α2

i β
2
k

]
= 1

N4

∑∑
(i,k)∈D2,N

Ed,m

[
n2α2

i β
2
k

]

= 1

N4

∑∑
(i,k)∈D2,N

Em

[
n2 AiBk

π2
i π2

k

Ed(ξi − πi)
2(ξk − πk)

2
]

≤ 1

K4
1

∑∑
(i,k)∈D2,N

Em

[
AiBk

n2 Ed(ξi − πi)
2(ξk − πk)

2
]
.
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Straightforward computation shows that Ed(ξi − πi)
2(ξk − πk)

2 equals

(πik − πiπk)(1 − 2πi)(1 − 2πk) + πiπk(1 − πi)(1 − πk).

Hence, with (C1)–(C2) we find that

Ed(ξi − πi)
2(ξk − πk)

2 ≤ ∣∣Ed(ξi − πi)(ξk − πk)
∣∣ + K2

2
n2

N2 = O

(
n2

N2

)
,

ω-almost surely. It follows that

1

N4

N∑
i=1

N∑
k=1

Ed,m

[
n2α2

i β
2
k

] ≤ O

(
1

N2

) ∑∑
(i,k)∈D2,N

Em[AiBk].

Since D2,N has N(N − 1) elements and Em[AiBj ] = p1p2 for (i, j) ∈ D2,N , it
follows that

(9.4)
1

N4

N∑
i=1

N∑
j=1

Ed,m

[
n2α2

i β
2
j

] ≤ Kp1p2.

Consider the second (and third) summation in (9.2). Similar to (9.3), we can then
write

1

N4

∣∣∣∣∣
N∑

i=1

∑
j �=i

N∑
k=1

Ed,m

[
n2αiαjβ

2
k

]∣∣∣∣∣
= 1

N4

∣∣∣∣∑∑∑
(i,j,k)∈D3,N

Ed,m

[
n2αiαjβ

2
k

]∣∣∣∣
≤ 1

N4

∑∑∑
(i,j,k)∈D3,N

∣∣∣∣Ed,m

[
n2 AiAjBk

πiπjπ
2
k

(ξi − πi)(ξj − πj )(ξk − πk)
2
]∣∣∣∣

≤ 1

N4

∑∑∑
(i,j,k)∈D3,N

Em

[
n2 AiAjBk

πiπjπ
2
k

∣∣Ed(ξi − πi)(ξj − πj )(ξk − πk)
2∣∣]

≤ 1

K4
1

∑∑∑
(i,j,k)∈D3,N

Em

[
AiAjBk

n2

∣∣Ed(ξi − πi)(ξj − πj )(ξk − πk)
2∣∣].

We find that Ed(ξi − πi)(ξj − πj )(ξk − πk)
2 equals

(1 − 2πk)Ed(ξi − πi)(ξj − πj )(ξk − πk) + πk(1 − πk)Ed(ξi − πi)(ξj − πj ).

With (C1)–(C3), this means |Ed(ξi − πi)(ξj − πj )(ξk − πk)
2| = O(n2/N3), ω-

almost surely. It follows that

1

N4

∣∣∣∣∣
N∑

i=1

∑
j �=i

N∑
k=1

Ed,m

[
n2αiαjβ

2
k

]∣∣∣∣∣ = O

(
1

N3

) ∑∑∑
(i,j,k)∈D3,N

Em[AiAjBk].
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Since D3,N has N(N − 1)(N − 2) elements and Ed,m[AiAjBk] = p2
1p2, for

(i, j, k) ∈ D3,N , we find

(9.5)
1

N4

∣∣∣∣∣
N∑

i=1

∑
j �=i

N∑
k=1

Ed,m

[
n2αiαjβ

2
k

]∣∣∣∣∣ ≤ Kp1p2.

The computations for the third summation in (9.2) are completely similar. Finally,
consider the last summation in (9.2). As before, this summation can be bounded
by

1

K4
1

∑
(i,j,k,l)∈D4,N

Em

[
AiAjBkBl

n2

∣∣Ed(ξi − πi)(ξj − πj )(ξk − πk)(ξl − πl)
∣∣].

Since D4,N has N(N − 1)(N − 2)(N − 3) elements and Em[AiAjBkBl] = p2
1p

2
2,

for (i, j, k, l) ∈ D4,N , with (C4) we conclude that

(9.6)
1

N4

∣∣∣∣∣
N∑

i=1

∑
j �=i

N∑
k=1

∑
l �=k

Ed,m

[
n2αiαjβkβl

]∣∣∣∣∣ ≤ Kp1p2.

Together with (9.4), (9.5) and decomposition (9.2), this proves (9.1). �

LEMMA 9.2. Let XN = √
n(FHT

N − FN) and suppose that (C1)–(C2), (HT1)–
(HT2) hold. For any k ∈ {1,2, . . .}, and t1, . . . , tk ∈ R, (XN(t1), . . . ,XN(tk)) con-
verges in distribution under Pd,m to a k-variate mean zero normal random vector
with covariance matrix �HT

k given in (3.4).

PROOF. The proof can be found in Supplement A in [14]. �

PROOF OF THEOREM 3.1. We first consider XN = √
n(FHT

N − FN) for the
case that the Yi ’s follow a uniform distribution on [0,1]. We apply Theorem 13.5
from [11]. Lemma 9.2 provides the limiting distribution of the finite dimen-
sional projections (XN(t1), . . . ,XN(tk)), which is the same as that of the vector
(GHT(t1), . . . ,G

HT(tk)), where G
HT is a mean zero Gaussian process with covari-

ance function

EmG
HT(s)GHT(t) = lim

N→∞
1

N2

N∑
i=1

N∑
j=1

Em

[
n
πij − πiπj

πiπj

1{Yi≤s}1{Yj≤t}
]
,

for all s, t ∈ R. Tightness condition (13.14) in [11] is provided by Lemma 9.1.
Since GHT is continuous at 1, the theorem now follows from Theorem 13.5 in [11]
for the case that the Yi ’s are uniformly distributed on [0,1].

To extend this to a functional CLT with i.i.d. random variables Y1, Y2, . . . with
a general c.d.f. F , we can follow the argument in the proof of Theorem 14.3 from
[11]. First, define the generalized inverse of F :

ϕ(s) = inf
{
t : s ≤ F(t)

}
,
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that satisfies s ≤ F(t) if and only if ϕ(s) ≤ t . This means that if U1,U2, . . . are
i.i.d. uniformly distributed on [0,1], ϕ(Ui) has the same distribution as Yi , so that

1{Yi≤t} d= 1{ϕ(Ui)≤t} = 1{Ui≤F(t)}. It follows that

XN(t) = √
n

{
1

N

N∑
i=1

ξi1{Yi≤t}
πi

− 1

N

N∑
i=1

1{Yi≤t}
}

d= ZN

(
F(t)

)
, t ∈ R,

where

(9.7) ZN(t) =
√

n

N

N∑
i=1

(
ξi

πi

− 1
)
1{Ui≤t}, t ∈ [0,1].

Hence, the general HT empirical process XN is the image of the HT uniform em-
pirical process ZN under the mapping ψ : D[0,1] �→ D(R) given by [ψx](t) =
x(F (t)). Note that, if xN → x in D[0,1] in the Skorohod topology and x has
continuous sample paths, then the convergence is uniform. But then also ψxN

converges to ψx uniformly in D(R). This implies that ψxN converges to ψx in
the Skorohod topology. We have established that ZN ⇒ Z weakly in D[0,1] in
the Skorohod topology, where Z has continuous sample paths. Therefore, accord-
ing to the continuous mapping theorem, for example, Theorem 2.7 in [11], it fol-
lows that ψ(ZN) ⇒ ψ(Z) weakly. This proves the theorem for Yi’s with a general
c.d.f. F . �

The proof of Proposition 3.1 is similar to that of Theorem 3.1 and can be found
in Supplement A in [14].

To establish tightness for the process
√

n(FHT
N − F) we use the following de-

composition:

(9.8)
√

n
(
F

HT
N − F

) = √
n
(
F

HT
N − FN

) +
√

n√
N

· √N(FN − F).

The first process on the right-hand side converges weakly to Gaussian process,
according to Theorem 3.1. The process

√
N(FN − F) also converges weakly to

a Gaussian process, due to the classical Donsker theorem. In particular both pro-
cesses on the right-hand side are tight in D(R) with the Skorohod metric. In gen-
eral, the sum of two tight processes in D(R) is not necessarily tight. However, this
will be the case if both processes converge weakly to continuous processes (see
Lemma B.2 in [14]).

LEMMA 9.3. Let V1,V2, . . . be a sequence of bounded i.i.d. random variables
on (�,F,Pm) with mean μV and variance σ 2

V , and let S2
N be defined by (3.2).

Suppose (HT1) and (HT3) hold and nS2
N → σ 2

HT > 0 in Pm-probability. Then

(9.9)
√

n

(
1

N

N∑
i=1

ξiVi

πi

− μV

)
,
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converges in distribution under Pd,m to a mean zero normal random variable with
variance σ 2

HT + λσ 2
V .

PROOF. The proof can be found in Supplement A in [14]. �

LEMMA 9.4. Let XF
N = √

n(FHT
N − F) and suppose that (C1)–(C2), (HT1)–

(HT4) hold. Then for any k ∈ {1,2, . . .}, and t1, t2, . . . , tk ∈ R, the sequence
(XF

N(t1), . . . ,X
F
N(tk)) converges in distribution under Pd,m to a k-variate mean

zero normal random vector with covariance matrix �F
HT = �HT

k + λ�F , where
�HT

k is given in (3.4) and �F is the k × k matrix with (q, r)-entry F(tq ∧ tr ) −
F(tq)F (tr ), for q, r = 1,2, . . . , k.

PROOF. The proof can be found in Supplement A in [14]. �

PROOF OF THEOREM 3.2. The proof is completely similar to that of Theo-
rem 3.1. We first consider the process X

F
N = √

n(FHT
N − F) for the case that the

Yi’s follow a uniform distribution with F(t) = t . Decompose X
F
N as in (9.8). By

Theorem 3.1, the first process on the right-hand side of (9.8) converges weakly
to a process in C[0,1]. Due to the classical Donsker theorem and (HT3), the sec-
ond process on the right-hand side of (9.8) also converges weakly to a process in
C[0,1]. Tightness of XF

N then follows from Lemma B.2 in [14]. Convergence of
the finite dimensional distributions is provided by Lemma 9.4. The theorem now
follows from Theorem 13.5 in [11] for the case that the Yi ’s are uniformly dis-
tributed on [0,1]. Next, this is extended to Yi ’s with a general c.d.f. F in the same
way as in the proof of Theorem 3.1. �

To establish convergence in distribution of the finite dimensional distributions
of

√
n(FHT

N − F) under the conditions of Proposition 3.2, as in the proof of
Lemma 9.4, we will use the Cramér–Wold device. To ensure that nS2

N still has a
strictly positive limit without imposing (HT4), we will need the following lemma.
Its proof can be found in Supplement A in [14].

LEMMA 9.5. Let F be the c.d.f. of the i.i.d. Y1, . . . , YN . For any k-tuple
(t1, . . . , tk) ∈ R

k , suppose that the values F(t1), . . . ,F (tk) are all distinct and such
that 0 < F(ti) < 1. Let a, b ∈ R, such that a ≥ b. If a > 0, then the k × k matrix
M with (i, j)th element Mij = aF(ti ∧ tj ) − bF(ti)F (tj ) is positive definite.

LEMMA 9.6. Let XF
N = √

n(FHT
N − F) and suppose that n and πi,πij , for

i, j = 1,2, . . . ,N , are deterministic. Suppose that (C1)–(C2), (HT1) and (HT3)
hold, as well as conditions (i)–(ii) of Proposition 3.2. Then, for any k ∈ {1,2, . . .},
and t1, . . . , tk ∈ R, (XF

N(t1), . . . ,X
F
N(tk)) converges in distribution under Pd,m to

a k-variate mean zero normal random vector with covariance matrix �F
HT, with

(q, r)-entry (μπ1 + λ)F (tq ∧ tr ) + (μπ2 − λ)F (tq)F (tr ), for q, r,= 1,2, . . . , k.
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PROOF. The proof can be found in Supplement A in [14]. �

The proof of Proposition 3.2 is similar to that of Theorem 3.2 and can be found
in Supplement A in [14].

PROOF OF THEOREM 4.1. For part (i), note that with S2
N defined in (3.2) with

Vi = 1, from (HT1) together with condition (4.6), it follows that

√
nSN × 1

SN

(
1

N

N∑
i=1

ξi

πi

− 1

)
→ N

(
0, σ 2

π

)
, ω-a.s.,

in distribution under Pd . This implies

(9.10)
√

n

(
N̂

N
− 1

)
= √

n

(
1

N

N∑
i=1

ξi

πi

− 1

)
→ N

(
0, σ 2

π

)
,

in distribution under Pd,m. In particular, since n → ∞, this proves part (i).
The proof of part(ii) is along the same lines as the proof of Theorems 3.1

and 3.2. First, consider the case, where the Yi ’s are uniform, with F(t) = t on
[0,1]. Then, with F

HT
N defined in (2.1) and X

F
N = √

n(FHT
N − F), we can write

G
π
N(t) = X

F
N(t) − (XF

N(t) − G
π
N(t)). According to Theorem 3.2, the process X

F
N

converges weakly to a continuous process. As a consequence of (9.10), the process

X
F
N(t) −G

π
N(t) = t

√
n

(
1

N

N∑
i=1

ξi

πi

− 1

)
,

also converges weakly to a continuous process. Hence, similar to the argument
in the proof of Theorem 3.2, we conclude that the process G

π
N is tight. Next, we

establish weak convergence of the finite dimensional projections. Details can be
found in Supplement A in [14]. �

PROOF OF THEOREM 4.2. We use (4.2). From the proof of Theorem 4.1, we
know that Gπ

N is tight. Together with Theorem 4.1(i), it then follows that the limit
behavior of

√
n(FHJ

N − FN) is the same as that of the process YN defined in (4.3).
This process can be written as

YN(t) =
√

n

N

N∑
i=1

(
ξi

πi

− 1
)
1{Yi≤t} − F(t)

√
n

N

N∑
i=1

(
ξi

πi

− 1
)
.

As in the proofs of Theorems 3.1, 3.2 and 4.1, we first consider the case of uniform
Yi ’s. The first process on the right-hand side is

√
n(FHT

N − FN), which converges
weakly to a continuous process, according to Theorem 3.1, whereas the second
process also converges to a continuous process due to (9.10). As in the proof of
Theorem 3.2, one can then argue that YN , being the difference of these processes,
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is tight. Next, we prove weak convergence of the finite dimensional projections.
Details can be found in Supplement A in [14]. �

The proofs of Propositions 4.1 and 4.2 are similar to those of Theorems 4.2
and 4.1, respectively, and can be found in Supplement A in [14].

PROOF OF COROLLARY 5.1. Similar to the approach followed in [3], we first
prove the results for a rejective sampling R and then extend them to high entropy
designs.

First, note that Ed(ξi − πi)(ξj − πj ) = πij − πiπj . According to Theorem 1 in
[13], which is an extension of Theorem 5.2 in [31], together with (C1) and (A2),
for sampling design R,

πij − πiπj = πiπj

{
− 1

dN

(1 − πi)(1 − πj ) + O
(
d−2
N

)}
= O

(
n2/

(
N2dN

))
,

(9.11)

ω-almost surely. Therefore, together with (A3), condition (C2) follows, ω-almost
surely. For condition (C3), according to Lemma 2 in [13], the third order correla-
tion Ed(ξi − πi)(ξj − πj )(ξk − πk) splits into terms of the form (πij − πiπj )πk

and the term πijk − πiπjπk . Similar to (9.11), together with Theorem 1 in [13],
the latter term can be shown to be of the order O(n3/(N3dN)), whereas the other
terms are of the same order according to (C1)–(C2) and (A2). Again, together with
(A3), condition (C3) follows, ω-almost surely. According to Proposition 1 in [13],∣∣Ed(ξi − πi)(ξj − πj )(ξk − πk)(ξl − πl)

∣∣ = O
(
d−2
N

)
a.s.-Pm.

Hence, together with (A4), condition (C4) follows, ω-almost surely. Theorems 3.1
and 3.2 are now immediate, when either (HT2) holds or (HT2)–(HT4), respec-
tively, which establishes parts (i) and (ii) for the rejective sampling design R. For
parts (iii) and (iv), it can be seen that under design R,

n

N2

∑∑
i �=j

πij − πiπj

πiπj

= − n

N2

∑∑
i �=j

(1 − πi)(1 − πj )

dN

+ O
(
n/d2

N

)
= − n

N2dN

(N − n)2 + O(1/dN) + O
(
n/d2

N

)
→ α,

with (A2)–(A3) and (A5). Hence, Theorems 4.2 and 4.3 are now immediate with
μπ2 = −α, when either (HT3) and (HJ2) hold or (HT3), (HJ2), and (HJ4), respec-
tively, which establishes parts (iii) and (iv) for rejective sampling design R.

To extend these results to high entropy designs, we use the same approach as
in [7]. They use the bounded Lipschitz metric for random elements X and Y on a
metric space D:

dBL(X,Y ) = sup
f ∈BL1

∣∣Ef (Y ) −Ef (X)
∣∣,
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where BL1 is the class of Lipschitz functions with Lipschitz norm bounded by
one. See [46], page 73, who define the metric dBL on the space of separable Borel
measures. Weak convergence is metrizable by this metric, that is,

Xα � X ⇔ sup
f ∈BL1

∣∣E∗f (Xα) −Ef (X)
∣∣ → 0.

Now, consider part (i) and let P be a high entropy design. Let R be some re-
jective sampling design such that D(P ‖ R) → 0. Given the inclusion proba-
bilities π1(P ), . . . , πN(P ), there exists a rejective sampling design R̃ such that
πi(R̃) = πi(P ). Note that D(P ‖ R̃) ≤ D(P ‖ R) → 0, according to Lemma 3
in [3].

Consider the Horvitz–Thompson process for the design P :

G
π(P )
P (t) = √

n

(
1

N

N∑
i=1

ξi(P )1{Yi≤t}
πi(P )

− 1

N

N∑
i=1

1{Yi≤t}
)
,

and compare this with the same process for design R̃,

G
π(P )

R̃
(t) = √

n

(
1

N

N∑
i=1

ξi(R̃)1{Yi≤t}
πi(P )

− 1

N

N∑
i=1

1{Yi≤t}
)
.

Then, because Ed [ξi(P )] = ∑
s∈SN

P (s)δi(s), where δi(s) = 1 when i ∈ s and

zero otherwise, it follows that for Edf (G
π(P )
P ), the argument inside f is indepen-

dent of the design P . Hence, for any f ∈ BL1, one finds

∣∣Edf
(
G

π(P )
P

) −Edf
(
G

π(P )

R̃

)∣∣ ≤ ∑
s∈P(UN)

∣∣P(s) − R̃(s)
∣∣ ≤

√
2D(P ‖ R̃),

using Lemma 2 in [3]. As |Ed,mf (Y ) − Ed,mf (X)| ≤ Em|Edf (Y ) − Edf (X)|,
it follows that dBL1(G

π(P )
P ,G

π(P )

R̃
) → 0. Because part (i) has already been estab-

lished for rejective sampling design R̃, we obtain that Gπ(P )

R̃
→G weakly. Hence,

dBL1(G
π(P )

R̃
,G) → 0 and, therefore,

dBL1

(
G

π(P )
P ,G

) ≤ dBL1

(
G

π(P )
P ,G

π(P )

R̃

) + dBL1

(
G

π(P )

R̃
,G

) → 0

which means that Gπ(P )
P → G weakly. This establishes part (i) for high entropy

design P . Parts (ii)–(iv) are obtained in the same way. �

The proofs for Corollaries 6.1 and 6.2 are fairly straightforward and can be
found in Supplement A in [14].
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SUPPLEMENTARY MATERIAL

Supplement to “Functional central limit theorems for single-stage sam-
plings designs.” (DOI: 10.1214/16-AOS1507SUPP; .pdf). Appendix A: Proofs
for results in the main text. This supplement contains detailed proofs of lemmas,
propositions and corollaries for results in the main text that are not present in Sec-
tion 9. Appendix B: Additional technicalities. This supplement contains detailed
proofs of some remarks and additional lemmas. Appendix C: Fixed size sampling
designs with deterministic inclusion probabilities. This supplement contains re-
sults for fixed size sampling designs with deterministic inclusion probabilities, ob-
tained under alternative conditions for (C2)–(C4).
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