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Abstract

Item nonresponse in surveys occurs when some, but not all, variables

are missing. Unadjusted estimators tend to exhibit some bias, called the

nonresponse bias, if the respondents differ from the nonrespondents with

respect to the study variables. In this paper, we focus on item nonre-

sponse, which is usually treated by some form of single imputation. We

examine the properties of doubly robust imputation procedures, which

are those that lead to an estimator that remains consistent if either the

outcome variable or the nonresponse mechanism are adequately modeled.

We establish the double robustness property of the imputed estimator of

the finite population distribution function under random hot-deck impu-

tation within classes. We also discuss the links between our approach and

that of Chambers and Dunstan (1986). The results of a simulation study

support our findings.
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1 Introduction

No matter how carefully survey staff try to maximize response, it is virtually

certain that some degree of nonresponse will occur in large scale surveys. Survey

statisticians distinguish unit nonresponse from item nonresponse. Unit nonre-

sponse occurs because some of the sampled units refuse to respond or because

of the inability to contact them. When some, but not all, variables are missing,

we are in presence of item nonresponse. The latter occurs, for example, because

some sample units refuse to respond to sensitive items, do not know the answer

to some items, or because of edit failures. Unadjusted estimators tend to ex-

hibit some bias, called the nonresponse bias, if the respondents differ from the

nonrespondents with respect to the study variables. To reduce the nonresponse

bias, weight adjustment procedures are used in the context of unit nonresponse,

whereas item nonresponse is usually treated through single imputation, whereby

a missing value is replaced by a single value.

In this paper, we restrict our attention to weighted random hot-deck impu-

tation, which consists of selecting a respondent (donor) at random from the

set of respondents with probability proportional to some weight (to be defined

later), and then using donor’s item value to ”fill in” for the missing value of

a nonrespondent (recipient). Random hot-deck imputation is widely used in

practice, especially in social and household surveys, because it tends to preserve

the distribution of the variable being imputed, which is desirable when estimat-

ing non-smooth functions such as quantiles. Also, it leads to actual (observed)

imputed values, which is especially important when the variable to be imputed

is categorical. Finally, with random hot-deck imputation, several missing vari-

ables may be imputed using a single donor, while satisfying post-imputation

edit constraints specified by subject-matter specialists. This helps in preserving

the relationship between variables of interest.

In order to study the properties of estimators in the presence of missing data,

2



two approaches are customarily used: (i) the nonresponse model (NM) approach

that requires the specification of a nonresponse model describing the unknown

nonresponse mechanism and (ii) the imputation model (IM) (also called the

outcome regression model) approach that requires the specification of a model

describing the distribution of the study variable. We consider doubly robust

imputation/estimation procedures that have attracted some attention in recent

years. An estimator is said to be doubly robust if it remains asymptotically

unbiased and consistent if either model is true. Thus, doubly robust procedures

offer some protection against misspecification of one model or the other. For

infinite populations, the reader is referred to Robins et al. (1994), Scharfstein

et al. (1999), Bang and Robins (2005), Tan (2006), Kang and Schafer (2008),

Rubin and van der Laan (2008) and Cao et al. (2009), among others. In the

context of finite population sampling, doubly robust procedures have been stud-

ied in Kott (1994), Kim and Park (2006), Haziza and Rao (2006), Chauvet and

Haziza (2012), Kim and Haziza (2014) and Haziza et al. (2014), among oth-

ers. So far, the literature on doubly robust inference has focussed on estimating

simple parameters such as means and totals. Surprisingly, little attention has

been paid to the problem of distribution functions in the presence of missing

data. Notable exceptions include Cheng and Chu (1996), Liu et al. (2011) and

Zhao et al. (2013). In the last two papers, the authors consider augmented

inverse probability weighted imputation procedure to estimate the distribution

function of a response variable. In this paper, we adopt a different approach

that consist of using a doubly robust version of the customary weighted random

hot-deck imputation procedure (see Haziza and Rao, 2006) to ”fill in” for the

missing values. Our objective is to produce a complete rectangular data file,

which allows the secondary analysts to obtain point estimates using complete

data estimation procedures.

The paper is organized as follows. After defining some notation, the underlying

models and the random imputation procedure are described in Section 2. The

main results are established in Section 3 under the following assumptions: (i)
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the sampling design is non-informative (Pfeffermann, 1993); (ii) the data are

MAR (Rubin, 1976) and (iii) the units respond independently of one another.

The assumption (iii) can be relaxed to consider the case of a correlated response

behaviour, see the discussion in Section 7. Since this assumption is fairly usual

in the literature and so as to simplify the presentation, we keep the assump-

tion of independent response behaviour in the body of the paper. In Section

4, we discuss the link between the proposed method and an estimation proce-

dure proposed by Chambers and Dunstan (1986) in the context of model-based

estimation of finite population distribution functions. A simulation study is con-

ducted in Section 5. In Section 6, we illustrate the proposed methodology using

data modeled from one industry in the Monthly Retail Trade Survey conducted

by the U.S. Census Bureau. We make some final remarks in Section 7.

2 Theoretical set-up

Consider a finite population U of size N . We are interested in estimating the

finite population distribution function, FN,y(t) = N−1
∑
i∈U 1(yi ≤ t), defined

for t ∈ R, where y denotes a study variable and 1(.) the usual indicator function.

A sample s of size n is selected according to a given sampling design p(·). Let

di = 1/πi be the sampling weight attached to unit i, with πi denoting its first-

order inclusion probability in the sample. The inclusion probabilities πi are

assumed to be known for all i ∈ U . A complete data estimator of FN,y(t) is

F̂N,y(t) =
∑
i∈s

d̃i1(yi ≤ t), (1)

where d̃i =
(∑

j∈s dj

)−1

di. When some y-values are missing, an estimator of

FN,y(t) is the imputed estimator

F̂I,y(t) =
∑
i∈s

d̃iri1(yi ≤ t) +
∑
i∈s

d̃i(1− ri)1(y∗i ≤ t), (2)
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where y∗i denotes the imputed value used to replace the missing yi and ri is

a response indicator attached to unit i such that ri = 1 if yi is observed and

ri = 0 if yi is missing.

Assume that the finite population U is divided into G mutually disjoint impu-

tation cells, U1, . . . , UG. Let ng be the size of sg = s
⋂
Ug, g = 1, . . . , G and

srg be the set of respondents in cell g, of size nrg. The elements in cell Ug are

assumed to be a realization of independently and identically distributed random

variables with mean µg and variance σ2
g ; that is,

m : yi ∼ (µg, σ
2
g), i ∈ Ug. (3)

The imputation cells are formed on the basis of auxiliary information, x, recorded

for both respondents and nonrespondents. Model (3) is the common mean model

within imputation cells. It is often called the imputation model (IM) or the out-

come regression model.

Let pi = P (ri = 1) be the response probability to item y for unit i. We assume

that units respond independently of one another; that is, pij = P (ri = 1, rj =

1) = pipj , i 6= j. Further, we assume that the pi’s can be modeled trough a

parametric model

pi = p(xi,α) (4)

for some vector of unknown parameters α. Model (4) is called the nonre-

sponse model (NM). The estimated response probability p̂i attached to unit

i is p̂i = p (xi, α̂) , where α̂ is a consistent estimator of α.

We assume that the data are Missing At Random (Rubon, 1976):

Em(yi | xi, ri = 1) = Em(yi | xi, ri = 0), (5)

where Em(.) denotes the expectation with respect to the imputation model (3).
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In order to study the theoretical properties of point estimators we consider two

inferential approaches: the NM approach, whereby, inference is made with re-

spect to the joint distribution induced by the sampling design and the assumed

nonresponse model given by (4); the IM approach, whereby inference is made

with respect to the joint distribution induced by the imputation model (3), the

sampling design and the nonresponse model. In the latter approach, explicit

assumptions about the non-response mechanism are not required but the data

are assumed to be MAR.

Based on (3), it may be tempting to estimate FN,y(t) by

F̂I,y(t) =

G∑
g=1

∑
i∈sg

d̃iri1(yi ≤ t) +
∑
i∈sg

d̃i(1− ri)1(ȳrg ≤ t)

 , (6)

for t ∈ R, where ȳrg =
(∑

i∈sg diri

)−1∑
i∈sg diriyi denotes the weighted mean

of respondents in cell g. This corresponds to mean imputation within cells. How-

ever, the estimator (6) is generally biased as mean imputation tends to distort

the distribution of the variable being imputed. Indeed, the variability of the

study variable y after imputation within each imputation cell is smaller than

the natural variability that would have been observed in the complete data case.

The relative distortion within each imputation cell increases as the expected re-

sponse rate within cells decreases.

We consider an alternative approach, whereby a missing value is treated through

random hot-deck imputation within classes. More specifically, missing yi in cell

Ug is replaced with

y∗i = yj for j ∈ srg, (7)

with probability

pr(y∗i = yj) = ω̃j =
dj

1−p̂j
p̂j∑

l∈sg rldl
1−p̂l
p̂l

. (8)
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The use of the imputed values (7) leads to a doubly robust estimator of a pop-

ulation total (or mean). That is, the resulting estimator remains consistent if

either the imputation model (3) or the nonresponse model (4) is correctly spec-

ified; see Haziza and Rao (2006). In the next section, we establish the uniform

consistency property of F̂I(t) with respect to both the NM approach and the IM

approach. We adopt the following notation: let Ep(·), Eq(·) and EI(·) denote

the expectation with respect to the sampling design, the nonresponse model and

the imputation mechanism, respectively.

3 Main results

We study the asymptotic properties of the estimated distribution function under

the random imputation procedure described in Section 2. We assume that there

exists a sequence of sampling designs and finite populations, indexed by ν, such

that the population size Nν , the sample size nν and the number of respondents

nrν tend to infinity when ν →∞. Though we suppress the index ν to simplify

the notation, the limits are understood as when ν →∞.

Under mild regularity conditions, Theorem 1 in Chauvet et al. (2011) implies

that, for any t ∈ R, F̂I,y(t) − FN,y(t) converges in probability to 0 under the

IM approach. It is thus sufficient to prove consistency under the NM approach.

We make the following regularity assumptions:

C1a: For any i 6= j ∈ U , πij − πi πj ≤ 0;

C1b: maxi6=j∈U |πij − πi πj | = O(n−1);

C2: There exists some constant 0 < f < 1 such that n/N → f ;

C3: There exists some constants C1, C2 > 0 such that for any i ∈ U :

C1
N

n
≤ di ≤ C2

N

n
;

7



C4: There exists some constant 0 < κ < 1 such that κ < pi for any i ∈ s;

C5: Epq

(∑G
g=1

∣∣∣∣ N∑
k∈sg dk

1−pk
pk

rk
− N∑

k∈sg dk(1−pk)

∣∣∣∣)2

= O(n−1).

C6: For any cell Ug, Epq

(
maxj∈srg

∣∣∣ ω̃j−ω̌j

ω̌j

∣∣∣)→ 0 and Epq

(
maxj∈srg

∣∣∣ ω̃j−ω̌j

1−ω̌j

∣∣∣)→
0, where

ω̌j =
dj

1−pj
pj∑

l∈srg dl
1−pl
pl

is obtained from ω̃j by replacing the estimated p̂j with the true probability

pj .

Assumptions C1a, C1b, C2 and C3 are standard regularity conditions, see for

example Breidt and Opsomer (2000). In particular, Assumption C3 guarantees

that no extreme weight dominates the others.

Theorem 1 Suppose that assumption C1a or C1b holds. Suppose that assump-

tions C2–C6 hold. Then

E
∣∣∣F̂I,y(t)− FN,y(t)

∣∣∣ −→
ν→∞

0. (9)

In particular, F̂I,y(t)− FN,y(t) converges in probability to 0 for any t ∈ R, and

the imputed values (7) lead to a consistent imputed pointwise estimator of the

distribution function with respect to the NM approach.

The point-wise consistency of the imputed distribution function may be strength-

ened to uniform consistency, making use of the following additional assumption:

C8: For all ε > 0, there exists ν0, M ∈ N and t1 < . . . < tM such that ∀N ≥ ν0,

0 ≤ FN,y(ti−)− FN,y(ti−1) ≤ ε. (10)
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Theorem 2 Assume that the conditions in Theorem 1 hold. Assume that con-

dition C8 holds. Then,

sup
t∈R

∣∣∣F̂I,y(t)− FN,y(t)
∣∣∣ Pr−→ 0 as N →∞.

4 Link with Chambers and Dunstan (1986)

In the context of model-based inference, Chambers and Dunstan (1986) pro-

posed an estimator of the distribution function, where the values of the non-

sampled units are predicted through a linear regression model; see also Valliant

et al. (2000). In this section, we derive in the somehow different context of

missing data, a Dunstan-Chambers type estimator and establish the link with

our approach. First, the complete data estimator F̂N,y(t) in (1) can be written

as

F̂N,y(t) =

G∑
g=1

∑
i∈sg

d̃iri1(yi ≤ t) +
∑
i∈sg

d̃i(1− ri)1(yi ≤ t)

 . (11)

While the first term on the right hand-side of (11) can be computed from the

responding units, the second term needs to be estimated. The expectation of

the latter with respect to model (3) is

G∑
g=1

∑
i∈sg

d̃i(1− ri)P (yi ≤ t) =

G∑
g=1

∑
i∈sg

d̃i(1− ri)P (yi − µg ≤ t− µg)

=

G∑
g=1

∑
i∈sg

d̃i(1− ri)P (εi ≤ t− µg)

=

G∑
g=1

∑
i∈sg

d̃i(1− ri)Gg (t− µg) , (12)

where Gg(x) = P (εi ≤ x) denotes the distribution function of the errors εi =

yi − µg in cell g. Following Chambers and Dunstan (1986), a natural estimator

of (12) consists of replacing Gg by an estimator based on the residuals observed
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on the responding units, given by

Ĝg(x) =
∑
j∈sg

ω̃iri1(êj ≤ x),

where êj = yj − ȳ∗rg with ȳ∗rg =
(∑

i∈sg diriω̃i

)−1∑
i∈sg diriω̃iyi. This leads to

the following Dunstan-Chambers type estimator of FN,y(t):

F̃I,y(t) =

G∑
g=1

∑
i∈sg

d̃iri1(yi ≤ t) +
∑
i∈sg

d̃i(1− ri)
∑
j∈sg

ω̃iri1(êj ≤ t− ȳ∗rg)


=

G∑
g=1

∑
i∈sg

d̃iri1(yi ≤ t) +
∑
i∈sg

d̃i(1− ri)
∑
j∈sg

ω̃iri1(yj ≤ t)

 . (13)

Now, the expectation of (2) under the imputation procedure (7) with respect to

the imputation mechanism is given by

EI{F̂I,y(t)} =

G∑
g=1

∑
i∈sg

d̃iri1(yi ≤ t) +
∑
i∈sg

d̃i(1− ri)
∑
j∈sg

ω̃iri1(yj ≤ t)


= F̃I,y(t),

which is identical to (13). That is, the Dunstan-Chambers type estimator can

be viewed as the integrated imputed estimator with respect to the imputation

mechanism. It is worth noting that the Dunstan-Chambers type estimator is

also doubly robust for the distribution function. That is,

E
∣∣∣F̃I,y(t)− FN,y(t)

∣∣∣ −→
ν→∞

0 (14)

under the conditions of Theorem 1, for both the IM approach and the NM

approach. The proof is briefly sketched in Appendix.
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5 Simulation study

We performed a limited simulation study to evaluate the proposed method,

in terms of relative bias and relative efficiency. We first generated a finite

population of size N = 10, 000, with one variable of interest y and two auxiliary

variables x1 and x2. The auxiliary variables were generated according to a

Gamma distribution with shape and scale parameters 5 and 2, respectively.

Given the x1-values and the x2-values, the y-values were generated according

to the model

yi = β0 + β1 x1i + β2 x2i + ηi. (15)

The parameters β0, β1 and β2 were set to 10, 1 and 1, respectively. The ηi

were generated according to a Normal distribution with mean 0 and variance

σ2, whose value was set so as to obtain a coefficient of determination (R2) ap-

proximately equal to 0.7. Results obtained with a coefficient of determination

approximately equal to 0.2 or 0.3 were similar, and are thus not presented.

We were interested in estimating the distribution function FN,y(t) for t = tα,

with tα the α-th quantile. We considered α = 0.05, 0.25, 0.50, 0.75 and 0.95 in

the simulation.

From the population, we selected 1, 000 samples of size n = 500 by simple ran-

dom sampling without replacement. In each sample, nonresponse was generated

according to the nonresponse mechanism

Pr(ri = 1|x1i, x2i) =
exp (−1 + 1.6 x1i + 1.6 x2i)

1 + exp (−1 + 1.6 x1i + 1.6 x2i)
. (16)

The coefficients in (16) were chosen to lead to an average response rate approx-

imately equal to 0.6. Results obtained with average response rates of 0.4 and

0.5 led to similar results and are thus not presented.
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To replace the missing values, we used random hot-deck imputation within

classes based on different working models. In each case, we first formed 10 im-

putation classes using the so-called score method (Haziza and Beaumont, 2007).

First, predicted values ŷi were obtained for both respondents and nonrespon-

dents using a linear regression model based on an x-vector of auxiliary variables.

That is, ŷi = x>i B̂r, i = 1, · · · , n, where B̂r denotes the weighted least square

estimator based on the responding units. Then, imputation classes, based on

the ŷ-values, were formed using the equal quantile method. That is, the ŷ-values

were ordered from the smallest value to the largest value and the sample was

partitioned into 10 equal size imputation classes. Within each class, the missing

values were imputed according to (7).

We considered four distinct scenarios:

Scenario 1: Both the imputation and the nonresponse model were correctly

specified. The predicted values ŷi were obtained using x = (1, x1, x2)> as

the vector of auxiliary variables, whereas the p̂i’s in (7) where obtained

through a logistic regression model using x = (1, x1, x2)> as the vector of

auxiliary variables.

Scenario 2: Only the nonresponse model was correctly specified. The pre-

dicted values ŷi were obtained using x = (1, x1)> as the vector of aux-

iliary variables, whereas the p̂i’s in (7) where obtained trough a logistic

regression model using x = (1, x1, x2)> as the vector of auxiliary variables.

Scenario 3: Only the imputation model was correctly specified. The predicted

values ŷi were obtained using x = (1, x1, x2)> as the vector of auxiliary

variables. We used two misspecified nonresponse models, which led to

Scenario 3a and Scenario 3b. In Scenario 3a, we set ωi = 1 for all i in

(7), which led to unweighted random hot-deck imputation within classes.

Note that this corresponds to a nonresponse model containing only the

intercept, leading to the overall response rate as the estimated response

probability for all i. In Scenario 3b, the p̂i’s in (7) were obtained through
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a logistic regression model using x = (1, x1)> as the vector of auxiliary

variables.

Scenario 4: Both the nonresponse model and the imputation model were mis-

specified. The predicted values ŷi were obtained using x = (1, x1)> as

the vector of auxiliary variables. We used two misspecified nonresponse

models, which led to Scenario 4a and Scenario 4b. In Scenario 4a, we set

ωi = 1 for all i in (7) as in Scenario 3a. In Scenario 4b, the p̂i’s in (7)

where obtained through a logistic regression model using x = (1, x1)> as

in Scenario 3b.

Then, in each sample, we computed the imputed estimator of FN,y(t), denoted

by F̂I,y(t), given by (2). To measure the bias of F̂I,y(t), we used the percent

Monte Carlo relative bias

RB{F̂I,y(t)} =
EMC{F̂I,y(t)} − FN,y(t)

FN,y(t)
× 100, (17)

where EMC{F̂I,y(t)} =
∑1000
r=1 F̂

(r)
I,y (t)/1000, with F̂

(r)
I,y (t) denoting the estimator

F̂I,y(t) for the r-th sample, r = 1, . . . , 1000. To measure the variability of

F̂I,y(t), we used the percent Monte Carlo relative root mean square error

RRMSE{F̂I,y(t)} =

√
MSE{F̂I,y(t)}
FN,y(t)

× 100,

where

MSE{F̂I,y(t)} =
1

1000

1000∑
r=1

{F̂ (r)
I,y (t)− FN,y(t)}2.

The results are shown in Table 1. The imputed estimator F̂I,y(t) showed a

small bias in Scenarios 1-3 for all values of α. We note a slight bias in Scenarios

2a and 2b for α = 0.05 with values of absolute RB equal to 2.0% and 1.7%,

respectively. These results suggest that the imputation procedure (7) lead to a

doubly robust estimator of the distribution function. As expected, when both

models were misspecified (Scenario 4a et 4b), the imputed estimator F̂I,y(t)
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α
0.05 0.25 0.50 0.75 0.95

Scenario 1 RB −0.2 0.1 0.3 0.1 0.0
RRMSE 32.4 10.8 5.6 2.9 1.1

Scenario 2 RB −0.7 −0.1 −0.0 0.0 0.0
RRMSE 33.3 10.7 5.7 2.9 1.1

Scenario 3a RB −2.0 −0.6 −0.1 −0.0 −0.1
RRMSE 31.1 10.8 5.5 2.9 1.1

Scenario 3b RB −1.7 −0.1 0.0 0.0 −0.0
RRMSE 32.2 10.7 5.5 2.9 1.1

Scenario 4a RB −19.2 −13.7 −9.3 −5.0 −1.2
RRMSE 34.0 17.1 11.1 6.1 1.8

Scenario 4b RB −19.3 −13.5 −9.0 −4.9 −1.0
RRMSE 33.4 17.0 10.8 6.0 1.7

Table 1: Monte Carlo percent relative bias and percent relative root mean square
error of the imputed estimator of the distribution function for several values of
α

exhibited a significant bias for all the scenarios, except for α = 0.95. Turning

to the efficiency of F̂I,y(t), we note that for a given value of α, the first three

scenarios led to similar values of RRMSE.

6 Application to the Monthly Retail Trade Sur-

vey

For the purpose of illustration of the proposed methodology, we used data mod-

eled from one industry in the Monthly Retail Trade Survey (MRTS) conducted

by the U.S. Census Bureau (Mulry et al., 2014). For confidentiality reasons,

the real data could not be used but the simulated data are realistic and de-

signed to match closely the original survey data in the first moments and in

the correlation structure. As variables of interest, we considered the sales (y1)

and the inventories (y2). Both y1 and y2 were either observed jointly or missing

jointly. As a size measure, we used the variable receipts (x) that was available

on the sampling frame. The stratum identifiers and the sampling weights di
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were available on the data file.

The data set came from a stratified simple random sampling design with six

strata Uh, including one take-all stratum. For simplicity, we focussed on the

five take-some strata. The take-all stratum contained very large units that may

require a particular nonresponse treatment, which is why it was not considered

further. Table 2 shows the number of sampled units nh and the number of

respondents nrh in each stratum. The estimated response probability inside the

stratum Uh is p̂h = nrh

nh
.

Stratum h 1 2 3 4 5

Number of units Nh 9, 493 6, 244 3, 259 1, 397 463
Sample size nh 145 123 72 57 61
Number of respondents nrh 73 75 55 44 54

Table 2: Total number of units, number of sampled units and number of re-
spondents inside strata

6.1 Imputation for sales

For the sales, we performed random hot-deck imputation within imputation cells

that were defined as follows: each stratum was divided into 2 or 3 imputation

cells based of the x-variable. That is, in each stratum, we ordered the units

with respect to their x-values and imputation cells were formed so that each

imputation cell had approximately the same number of sampled units. We note

G1
h the number of imputation cells Uhg within the stratum Uh. We used G1

1 =

G1
2 = 3 cells for the strata h = 1 and h = 2, and we used G1

3 = G1
4 = G1

5 = 2

cells for the three remaining strata. In this case, the imputed estimator of the

distribution function in (2) may be rewritten as

F̂I,y1(t) =
1

N

H∑
h=1

Nh
nh

G1
h∑

g=1

∑
i∈shg

ri1(y1i ≤ t) +
∑
i∈shg

(1− ri)1(y∗1i ≤ t)

 (18)
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with shg = s ∩ Uhg, of size nhg. Within each imputation cell, random hot-deck

imputation based on the imputation weights

ω̃j =
dj∑

l∈sg rldl
=

1

nrhg
for j ∈ srhg (19)

was used, where srhg = sr ∩ Uhg denotes the subset of respondents in Uhg, of

size nrhg. The imputation weights in (??) are a special case of the imputation

weights in (8). This is essentially equivalent to assuming equal response prob-

abilities within imputation cells. Point estimates for different values of t are

shown in Table 3.

In addition, we estimated the variance of F̂I,y1(t) under the NM approach.

For simplicity, we neglected the sampling rates within strata. Our variance

estimator uses the fact that conditionally on nhg and nrhg, we can treat the

set of respondents in each imputation cell as a simple random sample without

replacement. In this case, an approximately unbiased estimator of the total

variance of F̂I,y1(t) is

v1{F̂I,y1(t)} =
1

N2

H∑
h=1

(
Nh
nh

)2 G1
h∑

g=1

{nhg}2

nrhg − 1
F̂rhg,y1(t){1− F̂rhg,y1(t)}

+
1

N2

H∑
h=1

(
Nh
nh

)2 G1
h∑

g=1

{nmhg}F̂rhg,y1(t){1− F̂rhg,y1(t)}, (20)

where

F̂rhg,y1(t) =
1

nrhg

∑
i∈srhg

1(yi ≤ t),

and where nmhg denotes the size of the set of non-respondents smhg in Uhg. The

first term on the right-hand side of (20) is an estimator of the variance due to

both the sampling design and the non-response mechanism, while the second

term is an estimator of the imputation variance due to the random selection
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of donors within each imputation cell. We also considered a with-replacement

bootstrap variance estimator, which is obtained as follows:

1. Draw a simple random sample with replacement s∗rhg of size nrhg from

srhg, and a simple random sample with replacement s∗mhg of size nmhg

from smhg for any cell Uhg.

2. For any i ∈ s∗mhg, the value yi is replaced with y∗∗i = yj for j ∈ s∗rhg with

probability ω̃j . We compute

F̂ ∗I,y1(t) =
1

N

H∑
h=1

Nh
nh

G1
h∑

g=1

 ∑
i∈s∗rhg

1(y1i ≤ t) +
∑

i∈s∗mhg

(1− ri)1(y∗∗1i ≤ t)

 .

3. Repeat Steps 1 and 2 a large number of times, B, to get F̂
∗(1)
I,y1

(t), . . . , F̂
∗(B)
I,y1

(t).

The variance of F̂I,y1(t) is estimated by

vboot{F̂I,y1(t)} =
1

B − 1

B∑
b=1

(
F̂
∗(b)
I,y1

(t)− 1

B

B∑
c=1

F̂
∗(c)
I,y1

(t)

)2

. (21)

The estimated coefficients of variation obtained from (20) and (21) with B =

1, 000, are given in Table 3. We note that both variance estimation procedures

led to very similar results.

t (×1, 000) 300 700 1, 000 2, 000 5, 000 8, 000 10, 000

F̂I,y1(t) 0.20 0.33 0.44 0.63 0.91 0.97 0.99

cv1{F̂I,y1(t)} (%) 7.41 2.51 1.72 1.46 0.26 0.26 0.09

cvboot{F̂I,y1(t)} (%) 7.29 2.58 1.72 1.44 0.26 0.26 0.09

Table 3: Imputed distribution function and estimated coefficients of variation
for the variable y1

6.2 Imputation for inventories

For the inventories, the imputation cells were formed as follows: all the sampled

units were ordered according to their x-values. Then, we divided the ordered
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sample in G2 = 10 imputation cells of approximately equal size. Unlike for the

sales, note that the cells cut across the sampling strata. In this context, the

imputed estimator of the distribution function in (2) may be rewritten as

F̂I,y2(t) =
1

N

G2∑
g=1

H∑
h=1

Nh
nh

∑
i∈shg

ri1(y2i ≤ t) +
∑
i∈shg

(1− ri)1(y∗2i ≤ t)

 . (22)

Once again, we used random hot-deck imputation within each cell, whereby the

imputation weights were given by (8). Note that these imputation weights were

not constant inside the imputation cells (unlike for the sales) since the cells cut

across strata. Point estimates for several values of t and estimated coefficients

of variation based on the bootstrap estimator (21) with B = 1, 000 are shown

in Table 4.

t (×1, 000) 400 800 1, 300 3, 700 5, 500 8, 500

F̂I,y2(t) 0.13 0.22 0.28 0.59 0.75 0.85

cvboot{F̂I,y2(t)} (%) 10.52 7.40 6.26 3.30 2.17 1.33

Table 4: Imputed distribution function and estimated coefficients of variation
for the variable y2

7 Discussion

We established the double robustness property of the imputed estimator of the

distribution function under random hot-deck within classes. Our results were

based on the assumption that units respond independently of one another. In

practice, a correlated response behaviour may occur. To cover such cases, we

briefly describe an extension of the proposed hot-deck method. Denote by p̂ij

the estimation of the joint response probability, and by

p̂j|i =
p̂ij
p̂i
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the estimation of the conditional response probability pj|i =
pij
pi

. The extended

random hot-deck imputation is as follows: missing yi in cell Ug is replaced with

y∗i = yj for j ∈ srg, (23)

with probability

pr(y∗i = yj) = ω̃j|i =
dj

1−p̂j|i
p̂j|i∑

l∈sg rldl
1−p̂l|i
p̂l|i

. (24)

Mimicking the proof of Theorem 1, it can be shown that equation (9) still holds

under this hot-deck procedure; the proof is available from the authors. In the

particular case when the units respond independently, we obtain pj|i = pj and

p̂j|i = p̂j , which leads to the random hot-deck imputation method described in

Section 2.

Also, note that the assumption of independent response behaviour is generally

not tenable for multi-stage surveys (e.g., household surveys) as units within

clusters tend to be correlated with respect to the variable being imputed as well

with respect to the response behaviour. In this context, a more appropriate

imputation model would be the linear mixed model within imputation cells

yki = µg + νk + εki (25)

if element (ij) belongs to class g, where yki denotes the y-value attached to

unit i in cluster k, νk is i-th cluster random effect and εki is the residual error;

e.g., Haziza and Rao (2010) and Lago and Clark (2015) for more details. Also,

estimation of response probabilities based upon conditional logistic regression in

the context of correlated responses has been studied by Skinner and D’Arrigo

(2011). A doubly robust random hot-deck imputation procedure may be ob-

tained by using a random best linear unbiased prediction procedure (Lago and

Clark, 2015) based on (25). That is, the imputed value ŷki for missing yki is
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given by

ŷki = µ̂g + ν̂k + e∗ki,

where µ̂g is a suitable estimator of µg, ν̂k is a suitable predictor of νk and the

e∗ki’s are residuals selected at random with appropriate probabilities. The choice

of appropriate probabilities is a topic of future research.

Estimating the variance of F̂I,y(t) in the case of nonnegligible sampling frac-

tions is a challenging problem. Mashreghi et al. (2015) proposed a doubly

robust bootstrap procedure and showed empirically that the proposed proce-

dure performed well in terms of bias and coverage of confidence intervals for

distribution functions and quantiles. As for a doubly robust point estimator,

a doubly robust variance estimator remains consistent for the true variance

(which can be expressed as the sum of the sampling, nonresponse and imputa-

tion variances) if either the nonresponse or the imputation model is correctly

specified. The bootstrap procedure of Mashreghi et al. (2015) belongs to the

class of pseudo-populations bootstrap methods, whereby a pseudo-population

is first constructed from the set of respondents before selecting the samples and

generating nonresponse within each selected sample.

Under random hot-deck imputation, the imputed estimator F̂I,y(t) suffers from

the imputation variance that arises from the selection of donors within classes,

leading to a potentially inefficient estimator. Reducing/eliminating the imputa-

tion variance may be achieved by extending the results of Chauvet et al. (2011)

to the case of a distribution function. The idea is to select donors at random

while respecting appropriate constraints, which can be achieved through a bal-

anced selection of donors. An alternative to balanced imputation is fractional

imputation, whereby several imputed values are used to replaced a missing value,

each being assigned a fractional weight; see Kim and Fuller (2004). This topic

is currently under investigation.
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In practice, it is often required to estimate more complex parameters such as

quantiles or complex indicators of poverty and inequality such as Gini coeffi-

cients. These parameters depend on the distribution function. Thus, it would

be useful to establish the theoretical properties of imputed estimators such as

double robustness for this type of complex parameters.

Appendix A: Proofs of results

A preliminary lemma

For any missing yi, we note y∗∗i the value that would have been imputed if the

true response probabilities were known. That is, for missing yi in cell Ug, we

take:

y∗∗i = yj for j ∈ srg with probability ω̌j =
dj

1−pj
pj∑

l∈srg dl
1−pl
pl

. (26)

We note

T1 =
∑
i∈s

d̃i(1− ri) {1(y∗i ≤ t)− 1(y∗∗i ≤ t)} (27)

Lemma 1 Suppose that assumption C1a or C1b holds. Suppose that assump-

tions C2–C6 hold. Then E|T1| −→
ν→∞

0.

Proof. We first note that the imputed value y∗i (using the estimated probabil-

ities p̂l, l ∈ srg) and the virtual imputed value y∗∗i (using the true probabilities

pl, l ∈ srg) may be obtained as follows. Following Algorithm 6.2 in [?], we

consider αg the largest value in [0, 1] such that

0 ≤ ω0
j =

ω̃j − αg ω̌j
1− αg

≤ 1 for any j ∈ srg,
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which may be alternatively defined as αg = min
(

minj∈srg
ω̃j

ω̌j
,minj∈srg

1−ω̃j

1−ω̌j

)
.

Then, let

y∗∗i = yj for j ∈ srg with probability ω̌j ,

y0∗
i = yj for j ∈ srg with probability ω0

j ,

and let εg denote independent random variables such that εg = 1 with proba-

bility αg, and εg = 0 with probability 1− αg. Then any missing yi in cell Ug is

replaced with y∗i = εg y
∗∗
i + (1− εg) y0∗

i . It is straightforward to show that this

procedure leads to y∗i = yj for j ∈ srg with probability ω̃j . This joint impu-

tation procedure enables to generate an imputed value y∗i which is close to the

imputed value y∗∗i that we would obtain with the true probabilities pl, l ∈ srg.

In fact, y∗i and y∗∗i are identical with a probability αg.

Now, we can write

T1 =

G∑
g=1

(1− εg)
∑
i∈sg

d̃i(1− ri)
{

1(y0∗
i ≤ t)− 1(y∗∗i ≤ t)

}
so that

|T1| ≤
G∑
g=1

(1− εg)
∑
i∈sg

d̃i(1− ri)

≤
G∑
g=1

(1− εg)

and

Epq|T1| ≤ Epq

{
G∑
g=1

(1− αg)

}

≤ Epq

{
G∑
g=1

max

(
max
j∈srg

∣∣∣∣ ω̃j − ω̌jω̌j

∣∣∣∣ , max
j∈srg

∣∣∣∣ ω̃j − ω̌j1− ω̌j

∣∣∣∣)
}
.
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The result thus follows from assumption (C6).

Proof of Theorem 1

Let t ∈ R. First, the total error of F̂I,y(t) may be written as

F̂I,y(t)− FN,y(t) =
{
F̂N,y(t)− FN,y(t)

}
+
{
F̂I,y(t)− F̂N,y(t)

}
.

The first term on the right-hand side of the previous expression is the sampling

error, whereas the second term is the nonresponse error. Under the assumption

C1a or C1b, and under the assumptions C2 and C3, we easily prove that

E
∣∣∣F̂N,y(t)− FN,y(t)

∣∣∣ −→
ν→∞

0, (28)

see for example [?] and [?]. It is thus sufficient to prove that

E
∣∣∣F̂I,y(t)− F̂N,y(t)

∣∣∣ −→
ν→∞

0. (29)

The nonresponse error term may be written as

F̂I,y(t)− F̂N,y(t) =
∑
i∈s

d̃i(1− ri) {1(y∗i ≤ t)− 1(yi ≤ t)} (30)

= T1 + T2,

where

T2 =
∑
i∈s

d̃i(1− ri) {1(y∗∗i ≤ t)− 1(yi ≤ t)} . (31)

and T1 is given in (27). From Lemma 1, it is sufficient to prove that E|T2| −→
ν→∞

0.

This is equivalent to prove that E|T̃2| −→
ν→∞

0 where

T̃2 = N−1
∑
i∈s

di(1− ri) {1(y∗∗i ≤ t)− 1(yi ≤ t)} . (32)
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We proceed by showing that

EpqI

(
T̃2

)
−→
ν→∞

0, (33)

VpqI

(
T̃2

)
−→
ν→∞

0. (34)

We begin with (33). We have

EI

(
T̃2

)
= N−1

G∑
g=1

∑
i∈sg

di(1− ri)
∑
j∈sg

ω̌jrj {1(yj ≤ t)− 1(yi ≤ t)}

= U1 + U2, (35)

where

U1 = N−1
G∑
g=1

∑
i∈sg

di(1− ri)
∑
j∈sg

ω̆jrj {1(yj ≤ t)− 1(yi ≤ t)} ,

U2 = N−2
G∑
g=1

Xg

∑
i∈sg

di(1− ri)
∑
j∈sg

dj
1− pj
pj

rj {1(yj ≤ t)− 1(yi ≤ t)} ,

with

ω̆j =
dj

1−pj
pj∑

l∈sg dl (1− pl)
for any j ∈ sg,

Xg =

(
N∑

k∈sg dk
1−pk
pk

rk
− N∑

k∈sg dk(1− pk)

)
.

We have

Eq(U1) = 0 (36)

24



and

|U2| ≤ N−2
G∑
g=1

|Xg|
∑
i∈sg

di
∑
j∈sg

dj
1− κ
κ

≤ 1− κ
κ

(
G∑
g=1

|Xg|

)
×

(
N−1

∑
i∈s

di

)2

. (37)

From (C3) and (C5), equation (37) leads to

Epq(|U2|) −→
ν→∞

0. (38)

From (36) and (38), we obtain (33).

Now, we consider (34). We have VpqI(T̃2) = EpqVI(T̃2) + VpqEI(T̃2). Also,

VI(T̃2) = N−2
G∑
g=1

∑
i∈sg

d2
i (1− ri)

∑
j∈sg

ω̌jrj

1(yj ≤ t)−
∑
k∈sg

ω̌krk1(yk ≤ t)


2

≤ N−2
G∑
g=1

∑
i∈sg

d2
i (1− ri)

≤ N−2
∑
i∈s

d2
i .

The assumptions C2 and C3 imply that VI(T̃2) = O(n−1), so that

EpqVI(T̃2) −→
ν→∞

0. (39)

We now consider the term

VpqEI(T̃2) = Vpq(U1 + U2)

= Vpq(U1) + Vpq(U2) + Covpq(U1, U2).

Since Eq(U1) = 0, we have Vpq(U1) = EpVq(U1), and after some algebra we

have Vq(U1) = O(n−1), so that Vpq(U1) −→
ν→∞

0. On the other hand, Vpq(U2) ≤
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Epq(U
2
2 ), and using equation (37), we have from assumptions (C3) and (C5) that

Epq(U
2
2 ) −→

ν→∞
0. Hence Vpq(U2) −→

ν→∞
0. Using the Cauchy-Schwarz inequality,

we obtain Covpq(U1, U2) −→
ν→∞

0. Consequently,

VpqEI(T̃2) → 0. (40)

From (39) and (40), we obtain (34). This completes the proof.

Proof of Theorem 2

Let ε > 0 and η > 0. According to Condition C8, let ν0 and t1, . . . , tM such

that (10) is satisfied for all N ≥ ν0. Let t ∈ R and i such that ti−1 ≤ t < ti and

N ≥ ν0. By monotonicity of F̂I,y, we have

F̂I,y(t) ≤ F̂I,y(ti−)

and by (10),

FN,y(t) ≥ FN,y(ti−)− ε.

Hence,

F̂I,y(t)− FN,y(t) ≤ F̂I,y(ti−)− FN,y(ti−) + ε.

Similarly,

F̂I,y(t)− FN,y(t) ≥ F̂I,y(ti−1)− FN,y(ti−1)− ε.

Taking the supremum over all t yields

sup
t∈R

∣∣∣F̂I,y(t)− FN,y(t)
∣∣∣ ≤ ε+XN,ε,

where we have defined

XN,ε = max
i=1,...,M

max
{
F̂I,y(ti−1)− FN,y(ti−1), F̂I,y(ti−)− FN,y(ti−)

}
.
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Because F̂I,y − FN,y converges to 0 in probability as N → ∞, there exists ν1

such that for any N ≥ ν1, Pr(|XN,ε| > ε) ≤ η. Let now N ≥ max {ν0, ν1}. For

such N ,

Pr

(
sup
t∈R

∣∣∣F̂I,y(t)− FN,y(t)
∣∣∣ > 2ε

)
< η.

This concludes the proof.

Proof of the double robustness of the Dunstan-Chambers

type estimator

In view of Theorem 1, it is sufficient to prove that

E
∣∣∣F̂I,y(t)− F̃I,y(t)

∣∣∣ −→
ν→∞

0 (41)

both under the IM approach and the NM approach. The result will follow from

V {F̂I,y(t)− F̃I,y(t)} → 0, (42)

and since EI(F̂I,y(t)− F̃I,y(t)) = 0, it is sufficient to prove that

EpEqVI{F̂I,y(t)} → 0. (43)

We have

VI{F̂I,y(t)} =

G∑
g=1

∑
i∈sg

d̃2
i (1− ri)

∑
j∈sg

ω̃jrj

1(yj ≤ t)−
∑
k∈sg

ω̃krk1(yk ≤ t)


2

≤
G∑
g=1

∑
i∈sg

d̃2
i (1− ri)

≤
∑
i∈s

d̃2
i .

From Assumption (C3), VI{F̂I,y(t)} is O(n−1), which completes the proof.
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